Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
- Autores
- Cristiano, Piedad María; Campanello, Paula Inés; Bucci, Sandra Janet; Rodríguez, Sabrina Andrea; Lezcano, Oscar A.; Scholz, Fabian Gustavo; Madanes, Nora; Di Francescantonio, Débora; Oliva Carrasco, Laureano; Zhang, Yong Jiang; Goldstein, Guillermo Hernan
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology.
Fil: Cristiano, Piedad María. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Bucci, Sandra Janet. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina
Fil: Rodríguez, Sabrina Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lezcano, Oscar A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Scholz, Fabian Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina
Fil: Madanes, Nora. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina
Fil: Di Francescantonio, Débora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Oliva Carrasco, Laureano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Zhang, Yong Jiang. Harvard University; Estados Unidos. Chinese Academy of Sciences; República de China
Fil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Miami; Estados Unidos - Materia
-
CANOPY CONDUCTANCE
CLIMATIC DETERMINANTS OF TRANSPIRATION
REMOTE SENSING
SAP FLOW
WATER CONSUMPTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/27336
Ver los metadatos del registro completo
id |
CONICETDig_b3beaf4a11bb5f511c161a9dfeea21cc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/27336 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scalesCristiano, Piedad MaríaCampanello, Paula InésBucci, Sandra JanetRodríguez, Sabrina AndreaLezcano, Oscar A.Scholz, Fabian GustavoMadanes, NoraDi Francescantonio, DéboraOliva Carrasco, LaureanoZhang, Yong JiangGoldstein, Guillermo HernanCANOPY CONDUCTANCECLIMATIC DETERMINANTS OF TRANSPIRATIONREMOTE SENSINGSAP FLOWWATER CONSUMPTIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology.Fil: Cristiano, Piedad María. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Bucci, Sandra Janet. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; ArgentinaFil: Rodríguez, Sabrina Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lezcano, Oscar A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Scholz, Fabian Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; ArgentinaFil: Madanes, Nora. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; ArgentinaFil: Di Francescantonio, Débora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Oliva Carrasco, Laureano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Zhang, Yong Jiang. Harvard University; Estados Unidos. Chinese Academy of Sciences; República de ChinaFil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Miami; Estados UnidosElsevier Science2015-04-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/27336Cristiano, Piedad María; Campanello, Paula Inés; Bucci, Sandra Janet; Rodríguez, Sabrina Andrea; Lezcano, Oscar A.; et al.; Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales; Elsevier Science; Agricultural And Forest Meteorology; 203; 6-4-2015; 96-1060168-1923CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192315000088info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2015.01.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:55Zoai:ri.conicet.gov.ar:11336/27336instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:55.312CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales |
title |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales |
spellingShingle |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales Cristiano, Piedad María CANOPY CONDUCTANCE CLIMATIC DETERMINANTS OF TRANSPIRATION REMOTE SENSING SAP FLOW WATER CONSUMPTION |
title_short |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales |
title_full |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales |
title_fullStr |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales |
title_full_unstemmed |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales |
title_sort |
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales |
dc.creator.none.fl_str_mv |
Cristiano, Piedad María Campanello, Paula Inés Bucci, Sandra Janet Rodríguez, Sabrina Andrea Lezcano, Oscar A. Scholz, Fabian Gustavo Madanes, Nora Di Francescantonio, Débora Oliva Carrasco, Laureano Zhang, Yong Jiang Goldstein, Guillermo Hernan |
author |
Cristiano, Piedad María |
author_facet |
Cristiano, Piedad María Campanello, Paula Inés Bucci, Sandra Janet Rodríguez, Sabrina Andrea Lezcano, Oscar A. Scholz, Fabian Gustavo Madanes, Nora Di Francescantonio, Débora Oliva Carrasco, Laureano Zhang, Yong Jiang Goldstein, Guillermo Hernan |
author_role |
author |
author2 |
Campanello, Paula Inés Bucci, Sandra Janet Rodríguez, Sabrina Andrea Lezcano, Oscar A. Scholz, Fabian Gustavo Madanes, Nora Di Francescantonio, Débora Oliva Carrasco, Laureano Zhang, Yong Jiang Goldstein, Guillermo Hernan |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CANOPY CONDUCTANCE CLIMATIC DETERMINANTS OF TRANSPIRATION REMOTE SENSING SAP FLOW WATER CONSUMPTION |
topic |
CANOPY CONDUCTANCE CLIMATIC DETERMINANTS OF TRANSPIRATION REMOTE SENSING SAP FLOW WATER CONSUMPTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology. Fil: Cristiano, Piedad María. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina Fil: Bucci, Sandra Janet. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina Fil: Rodríguez, Sabrina Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lezcano, Oscar A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina Fil: Scholz, Fabian Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina Fil: Madanes, Nora. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina Fil: Di Francescantonio, Débora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina Fil: Oliva Carrasco, Laureano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina Fil: Zhang, Yong Jiang. Harvard University; Estados Unidos. Chinese Academy of Sciences; República de China Fil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Miami; Estados Unidos |
description |
The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/27336 Cristiano, Piedad María; Campanello, Paula Inés; Bucci, Sandra Janet; Rodríguez, Sabrina Andrea; Lezcano, Oscar A.; et al.; Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales; Elsevier Science; Agricultural And Forest Meteorology; 203; 6-4-2015; 96-106 0168-1923 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/27336 |
identifier_str_mv |
Cristiano, Piedad María; Campanello, Paula Inés; Bucci, Sandra Janet; Rodríguez, Sabrina Andrea; Lezcano, Oscar A.; et al.; Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales; Elsevier Science; Agricultural And Forest Meteorology; 203; 6-4-2015; 96-106 0168-1923 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192315000088 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2015.01.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614040231346176 |
score |
13.070432 |