Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales

Autores
Cristiano, Piedad María; Campanello, Paula Inés; Bucci, Sandra Janet; Rodríguez, Sabrina Andrea; Lezcano, Oscar A.; Scholz, Fabian Gustavo; Madanes, Nora; Di Francescantonio, Débora; Oliva Carrasco, Laureano; Zhang, Yong Jiang; Goldstein, Guillermo Hernan
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology.
Fil: Cristiano, Piedad María. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Bucci, Sandra Janet. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina
Fil: Rodríguez, Sabrina Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lezcano, Oscar A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Scholz, Fabian Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina
Fil: Madanes, Nora. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina
Fil: Di Francescantonio, Débora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Oliva Carrasco, Laureano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Zhang, Yong Jiang. Harvard University; Estados Unidos. Chinese Academy of Sciences; República de China
Fil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Miami; Estados Unidos
Materia
CANOPY CONDUCTANCE
CLIMATIC DETERMINANTS OF TRANSPIRATION
REMOTE SENSING
SAP FLOW
WATER CONSUMPTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/27336

id CONICETDig_b3beaf4a11bb5f511c161a9dfeea21cc
oai_identifier_str oai:ri.conicet.gov.ar:11336/27336
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scalesCristiano, Piedad MaríaCampanello, Paula InésBucci, Sandra JanetRodríguez, Sabrina AndreaLezcano, Oscar A.Scholz, Fabian GustavoMadanes, NoraDi Francescantonio, DéboraOliva Carrasco, LaureanoZhang, Yong JiangGoldstein, Guillermo HernanCANOPY CONDUCTANCECLIMATIC DETERMINANTS OF TRANSPIRATIONREMOTE SENSINGSAP FLOWWATER CONSUMPTIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology.Fil: Cristiano, Piedad María. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Bucci, Sandra Janet. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; ArgentinaFil: Rodríguez, Sabrina Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lezcano, Oscar A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Scholz, Fabian Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; ArgentinaFil: Madanes, Nora. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; ArgentinaFil: Di Francescantonio, Débora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Oliva Carrasco, Laureano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Zhang, Yong Jiang. Harvard University; Estados Unidos. Chinese Academy of Sciences; República de ChinaFil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Miami; Estados UnidosElsevier Science2015-04-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/27336Cristiano, Piedad María; Campanello, Paula Inés; Bucci, Sandra Janet; Rodríguez, Sabrina Andrea; Lezcano, Oscar A.; et al.; Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales; Elsevier Science; Agricultural And Forest Meteorology; 203; 6-4-2015; 96-1060168-1923CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192315000088info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2015.01.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:55Zoai:ri.conicet.gov.ar:11336/27336instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:55.312CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
spellingShingle Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
Cristiano, Piedad María
CANOPY CONDUCTANCE
CLIMATIC DETERMINANTS OF TRANSPIRATION
REMOTE SENSING
SAP FLOW
WATER CONSUMPTION
title_short Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_full Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_fullStr Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_full_unstemmed Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_sort Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
dc.creator.none.fl_str_mv Cristiano, Piedad María
Campanello, Paula Inés
Bucci, Sandra Janet
Rodríguez, Sabrina Andrea
Lezcano, Oscar A.
Scholz, Fabian Gustavo
Madanes, Nora
Di Francescantonio, Débora
Oliva Carrasco, Laureano
Zhang, Yong Jiang
Goldstein, Guillermo Hernan
author Cristiano, Piedad María
author_facet Cristiano, Piedad María
Campanello, Paula Inés
Bucci, Sandra Janet
Rodríguez, Sabrina Andrea
Lezcano, Oscar A.
Scholz, Fabian Gustavo
Madanes, Nora
Di Francescantonio, Débora
Oliva Carrasco, Laureano
Zhang, Yong Jiang
Goldstein, Guillermo Hernan
author_role author
author2 Campanello, Paula Inés
Bucci, Sandra Janet
Rodríguez, Sabrina Andrea
Lezcano, Oscar A.
Scholz, Fabian Gustavo
Madanes, Nora
Di Francescantonio, Débora
Oliva Carrasco, Laureano
Zhang, Yong Jiang
Goldstein, Guillermo Hernan
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CANOPY CONDUCTANCE
CLIMATIC DETERMINANTS OF TRANSPIRATION
REMOTE SENSING
SAP FLOW
WATER CONSUMPTION
topic CANOPY CONDUCTANCE
CLIMATIC DETERMINANTS OF TRANSPIRATION
REMOTE SENSING
SAP FLOW
WATER CONSUMPTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology.
Fil: Cristiano, Piedad María. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Bucci, Sandra Janet. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina
Fil: Rodríguez, Sabrina Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lezcano, Oscar A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Scholz, Fabian Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia; Argentina
Fil: Madanes, Nora. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina
Fil: Di Francescantonio, Débora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Oliva Carrasco, Laureano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina
Fil: Zhang, Yong Jiang. Harvard University; Estados Unidos. Chinese Academy of Sciences; República de China
Fil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Miami; Estados Unidos
description The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/27336
Cristiano, Piedad María; Campanello, Paula Inés; Bucci, Sandra Janet; Rodríguez, Sabrina Andrea; Lezcano, Oscar A.; et al.; Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales; Elsevier Science; Agricultural And Forest Meteorology; 203; 6-4-2015; 96-106
0168-1923
CONICET Digital
CONICET
url http://hdl.handle.net/11336/27336
identifier_str_mv Cristiano, Piedad María; Campanello, Paula Inés; Bucci, Sandra Janet; Rodríguez, Sabrina Andrea; Lezcano, Oscar A.; et al.; Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales; Elsevier Science; Agricultural And Forest Meteorology; 203; 6-4-2015; 96-106
0168-1923
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192315000088
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2015.01.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614040231346176
score 13.070432