Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees

Autores
Scholz, Fabian Gustavo; Bucci, Sandra Janet; Goldstein, Guillermo Hernan; Meinzer, Frederick C.; Franco, Augusto C.; Miralles Wilhelm, Fernando
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. We have previously shown that nocturnal sap flow accounts for up to 28% of total daily transpiration in woody species growing in a nutrient-poor Brazilian Cerrado ecosystem. In the present study, we assessed the effect of increased nutrient supply on nocturnal transpiration in three dominant Cerrado tree species to explore the hypothesis that, in nutrient-poor systems, continued transpiration at night may enhance delivery of nutrients to root-absorbing surfaces. We compared nocturnal transpiration of trees growing in unfertilized plots and plots to which nitrogen (N) and phosphorus (P) had been added twice yearly from 1998 to 2005. Three independent indicators of nocturnal transpiration were evaluated: sap flow in terminal branches, stomatal conductance (gs), and disequilibrium in water potential between covered and exposed leaves (ΔΨL). In the unfertilized trees, about 25% of the total daily sap flow occurred at night. Nocturnal sap flow was consistently lower in the N- and P-fertilized trees, significantly so in trees in the N treatment. Similarly, nocturnal gs was consistently lower in fertilized trees than in unfertilized trees where it sometimes reached values of 150 mmol m−2 s−1 by the end of the dark period. Predawn gs and the percentage of nocturnal sap flow were linearly related. Nocturnal ΔΨL was significantly greater in the unfertilized trees than in N- and P-fertilized trees. The absolute magnitude of ΔΨL increased linearly with the percentage of nocturnal sap flow. These results are consistent with the idea that enhancing nutrient uptake by allowing additional transpiration to occur at night when evaporative demand is lower may avoid excessive dehydration associated with increased stomatal opening during the day when evaporative demand is high.
Fil: Scholz, Fabian Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bucci, Sandra Janet. University of Miami; Estados Unidos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. University of Miami; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Meinzer, Frederick C.. USDA Forest Service. Forestry Sciences Laboratory; Estados Unidos
Fil: Franco, Augusto C.. Universidade do Brasília; Brasil
Fil: Miralles Wilhelm, Fernando. Florida International University; Estados Unidos
Materia
CERRADO
LEAF WATER POTENTIAL
STOMATAL CONDUCTANCE
TRANSPIRATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/101274

id CONICETDig_02d48fd49c1bb02e3b70623408b42302
oai_identifier_str oai:ri.conicet.gov.ar:11336/101274
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna treesScholz, Fabian GustavoBucci, Sandra JanetGoldstein, Guillermo HernanMeinzer, Frederick C.Franco, Augusto C.Miralles Wilhelm, FernandoCERRADOLEAF WATER POTENTIALSTOMATAL CONDUCTANCETRANSPIRATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. We have previously shown that nocturnal sap flow accounts for up to 28% of total daily transpiration in woody species growing in a nutrient-poor Brazilian Cerrado ecosystem. In the present study, we assessed the effect of increased nutrient supply on nocturnal transpiration in three dominant Cerrado tree species to explore the hypothesis that, in nutrient-poor systems, continued transpiration at night may enhance delivery of nutrients to root-absorbing surfaces. We compared nocturnal transpiration of trees growing in unfertilized plots and plots to which nitrogen (N) and phosphorus (P) had been added twice yearly from 1998 to 2005. Three independent indicators of nocturnal transpiration were evaluated: sap flow in terminal branches, stomatal conductance (gs), and disequilibrium in water potential between covered and exposed leaves (ΔΨL). In the unfertilized trees, about 25% of the total daily sap flow occurred at night. Nocturnal sap flow was consistently lower in the N- and P-fertilized trees, significantly so in trees in the N treatment. Similarly, nocturnal gs was consistently lower in fertilized trees than in unfertilized trees where it sometimes reached values of 150 mmol m−2 s−1 by the end of the dark period. Predawn gs and the percentage of nocturnal sap flow were linearly related. Nocturnal ΔΨL was significantly greater in the unfertilized trees than in N- and P-fertilized trees. The absolute magnitude of ΔΨL increased linearly with the percentage of nocturnal sap flow. These results are consistent with the idea that enhancing nutrient uptake by allowing additional transpiration to occur at night when evaporative demand is lower may avoid excessive dehydration associated with increased stomatal opening during the day when evaporative demand is high.Fil: Scholz, Fabian Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bucci, Sandra Janet. University of Miami; Estados Unidos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. University of Miami; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Meinzer, Frederick C.. USDA Forest Service. Forestry Sciences Laboratory; Estados UnidosFil: Franco, Augusto C.. Universidade do Brasília; BrasilFil: Miralles Wilhelm, Fernando. Florida International University; Estados UnidosOxford University Press2007-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101274Scholz, Fabian Gustavo; Bucci, Sandra Janet; Goldstein, Guillermo Hernan; Meinzer, Frederick C.; Franco, Augusto C.; et al.; Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees; Oxford University Press; Tree Physiology; 27; 4; 1-2007; 551-5590829-318XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/treephys/27.4.551info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/treephys/article/27/4/551/1666108info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:13Zoai:ri.conicet.gov.ar:11336/101274instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:14.073CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees
title Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees
spellingShingle Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees
Scholz, Fabian Gustavo
CERRADO
LEAF WATER POTENTIAL
STOMATAL CONDUCTANCE
TRANSPIRATION
title_short Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees
title_full Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees
title_fullStr Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees
title_full_unstemmed Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees
title_sort Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees
dc.creator.none.fl_str_mv Scholz, Fabian Gustavo
Bucci, Sandra Janet
Goldstein, Guillermo Hernan
Meinzer, Frederick C.
Franco, Augusto C.
Miralles Wilhelm, Fernando
author Scholz, Fabian Gustavo
author_facet Scholz, Fabian Gustavo
Bucci, Sandra Janet
Goldstein, Guillermo Hernan
Meinzer, Frederick C.
Franco, Augusto C.
Miralles Wilhelm, Fernando
author_role author
author2 Bucci, Sandra Janet
Goldstein, Guillermo Hernan
Meinzer, Frederick C.
Franco, Augusto C.
Miralles Wilhelm, Fernando
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv CERRADO
LEAF WATER POTENTIAL
STOMATAL CONDUCTANCE
TRANSPIRATION
topic CERRADO
LEAF WATER POTENTIAL
STOMATAL CONDUCTANCE
TRANSPIRATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. We have previously shown that nocturnal sap flow accounts for up to 28% of total daily transpiration in woody species growing in a nutrient-poor Brazilian Cerrado ecosystem. In the present study, we assessed the effect of increased nutrient supply on nocturnal transpiration in three dominant Cerrado tree species to explore the hypothesis that, in nutrient-poor systems, continued transpiration at night may enhance delivery of nutrients to root-absorbing surfaces. We compared nocturnal transpiration of trees growing in unfertilized plots and plots to which nitrogen (N) and phosphorus (P) had been added twice yearly from 1998 to 2005. Three independent indicators of nocturnal transpiration were evaluated: sap flow in terminal branches, stomatal conductance (gs), and disequilibrium in water potential between covered and exposed leaves (ΔΨL). In the unfertilized trees, about 25% of the total daily sap flow occurred at night. Nocturnal sap flow was consistently lower in the N- and P-fertilized trees, significantly so in trees in the N treatment. Similarly, nocturnal gs was consistently lower in fertilized trees than in unfertilized trees where it sometimes reached values of 150 mmol m−2 s−1 by the end of the dark period. Predawn gs and the percentage of nocturnal sap flow were linearly related. Nocturnal ΔΨL was significantly greater in the unfertilized trees than in N- and P-fertilized trees. The absolute magnitude of ΔΨL increased linearly with the percentage of nocturnal sap flow. These results are consistent with the idea that enhancing nutrient uptake by allowing additional transpiration to occur at night when evaporative demand is lower may avoid excessive dehydration associated with increased stomatal opening during the day when evaporative demand is high.
Fil: Scholz, Fabian Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bucci, Sandra Janet. University of Miami; Estados Unidos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina. University of Miami; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Meinzer, Frederick C.. USDA Forest Service. Forestry Sciences Laboratory; Estados Unidos
Fil: Franco, Augusto C.. Universidade do Brasília; Brasil
Fil: Miralles Wilhelm, Fernando. Florida International University; Estados Unidos
description Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. We have previously shown that nocturnal sap flow accounts for up to 28% of total daily transpiration in woody species growing in a nutrient-poor Brazilian Cerrado ecosystem. In the present study, we assessed the effect of increased nutrient supply on nocturnal transpiration in three dominant Cerrado tree species to explore the hypothesis that, in nutrient-poor systems, continued transpiration at night may enhance delivery of nutrients to root-absorbing surfaces. We compared nocturnal transpiration of trees growing in unfertilized plots and plots to which nitrogen (N) and phosphorus (P) had been added twice yearly from 1998 to 2005. Three independent indicators of nocturnal transpiration were evaluated: sap flow in terminal branches, stomatal conductance (gs), and disequilibrium in water potential between covered and exposed leaves (ΔΨL). In the unfertilized trees, about 25% of the total daily sap flow occurred at night. Nocturnal sap flow was consistently lower in the N- and P-fertilized trees, significantly so in trees in the N treatment. Similarly, nocturnal gs was consistently lower in fertilized trees than in unfertilized trees where it sometimes reached values of 150 mmol m−2 s−1 by the end of the dark period. Predawn gs and the percentage of nocturnal sap flow were linearly related. Nocturnal ΔΨL was significantly greater in the unfertilized trees than in N- and P-fertilized trees. The absolute magnitude of ΔΨL increased linearly with the percentage of nocturnal sap flow. These results are consistent with the idea that enhancing nutrient uptake by allowing additional transpiration to occur at night when evaporative demand is lower may avoid excessive dehydration associated with increased stomatal opening during the day when evaporative demand is high.
publishDate 2007
dc.date.none.fl_str_mv 2007-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/101274
Scholz, Fabian Gustavo; Bucci, Sandra Janet; Goldstein, Guillermo Hernan; Meinzer, Frederick C.; Franco, Augusto C.; et al.; Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees; Oxford University Press; Tree Physiology; 27; 4; 1-2007; 551-559
0829-318X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/101274
identifier_str_mv Scholz, Fabian Gustavo; Bucci, Sandra Janet; Goldstein, Guillermo Hernan; Meinzer, Frederick C.; Franco, Augusto C.; et al.; Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees; Oxford University Press; Tree Physiology; 27; 4; 1-2007; 551-559
0829-318X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/treephys/27.4.551
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/treephys/article/27/4/551/1666108
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613866589257728
score 13.070432