Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps

Autores
Meschino, Gustavo Javier; Comas, Diego Sebastián; Ballarin, Virginia Laura; Scandurra, Adriana Gabriela; Passoni, Lucía Isabel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the area of pattern recognition, clustering algorithms are a family of unsupervised classifiers designed with the aim to discover unrevealed structures in the data. While this is a never ending research topic, many methods have been developed with good theoretical and practical properties. One of such methods is based on self organizing maps (SOM), which have been successfully used for data clustering, using a two levels clustering approach. Newer on the field, clustering systems based on fuzzy logic improve the performance of traditional approaches. In this paper we combine both approaches. Most of the previous works on fuzzy clustering are based on fuzzy inference systems, but we propose the design of a new clustering system in which we use predicate fuzzy logic to perform the clustering task, being automatically designed based on data. Given a datum, degrees of truth of fuzzy predicates associated with each cluster are computed using continuous membership functions defined over data features. The predicate with the maximum degree of truth determines the cluster to be assigned. Knowledge is discovered from data, obtained using the SOM generalization aptitude and taking advantage of the well-known SOM abilities to discover natural data grouping when compared with direct clustering. In addition, the proposed approach adds linguistic interpretability when membership functions are analyzed by a field expert. We also present how this approach can be used to deal with partitioned data. Results show that clustering accuracy obtained is high and it outperforms other methods in the majority of datasets tested.
Fil: Meschino, Gustavo Javier. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; Argentina
Fil: Comas, Diego Sebastián. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Scandurra, Adriana Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Passoni, Lucía Isabel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Materia
Clustering
Degree of Truth
Fuzzy Logic
Fuzzy Predicates
Self-Organizing Maps
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38483

id CONICETDig_b26df7e1d337f1399b3368d0977dfd8b
oai_identifier_str oai:ri.conicet.gov.ar:11336/38483
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing mapsMeschino, Gustavo JavierComas, Diego SebastiánBallarin, Virginia LauraScandurra, Adriana GabrielaPassoni, Lucía IsabelClusteringDegree of TruthFuzzy LogicFuzzy PredicatesSelf-Organizing Mapshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the area of pattern recognition, clustering algorithms are a family of unsupervised classifiers designed with the aim to discover unrevealed structures in the data. While this is a never ending research topic, many methods have been developed with good theoretical and practical properties. One of such methods is based on self organizing maps (SOM), which have been successfully used for data clustering, using a two levels clustering approach. Newer on the field, clustering systems based on fuzzy logic improve the performance of traditional approaches. In this paper we combine both approaches. Most of the previous works on fuzzy clustering are based on fuzzy inference systems, but we propose the design of a new clustering system in which we use predicate fuzzy logic to perform the clustering task, being automatically designed based on data. Given a datum, degrees of truth of fuzzy predicates associated with each cluster are computed using continuous membership functions defined over data features. The predicate with the maximum degree of truth determines the cluster to be assigned. Knowledge is discovered from data, obtained using the SOM generalization aptitude and taking advantage of the well-known SOM abilities to discover natural data grouping when compared with direct clustering. In addition, the proposed approach adds linguistic interpretability when membership functions are analyzed by a field expert. We also present how this approach can be used to deal with partitioned data. Results show that clustering accuracy obtained is high and it outperforms other methods in the majority of datasets tested.Fil: Meschino, Gustavo Javier. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; ArgentinaFil: Comas, Diego Sebastián. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Scandurra, Adriana Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Passoni, Lucía Isabel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaElsevier Science2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38483Meschino, Gustavo Javier; Comas, Diego Sebastián; Ballarin, Virginia Laura; Scandurra, Adriana Gabriela; Passoni, Lucía Isabel; Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps; Elsevier Science; Neurocomputing; 147; 1; 1-2015; 47-590925-2312CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925231214005992info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2014.02.059info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:11Zoai:ri.conicet.gov.ar:11336/38483instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:11.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps
title Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps
spellingShingle Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps
Meschino, Gustavo Javier
Clustering
Degree of Truth
Fuzzy Logic
Fuzzy Predicates
Self-Organizing Maps
title_short Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps
title_full Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps
title_fullStr Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps
title_full_unstemmed Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps
title_sort Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps
dc.creator.none.fl_str_mv Meschino, Gustavo Javier
Comas, Diego Sebastián
Ballarin, Virginia Laura
Scandurra, Adriana Gabriela
Passoni, Lucía Isabel
author Meschino, Gustavo Javier
author_facet Meschino, Gustavo Javier
Comas, Diego Sebastián
Ballarin, Virginia Laura
Scandurra, Adriana Gabriela
Passoni, Lucía Isabel
author_role author
author2 Comas, Diego Sebastián
Ballarin, Virginia Laura
Scandurra, Adriana Gabriela
Passoni, Lucía Isabel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Clustering
Degree of Truth
Fuzzy Logic
Fuzzy Predicates
Self-Organizing Maps
topic Clustering
Degree of Truth
Fuzzy Logic
Fuzzy Predicates
Self-Organizing Maps
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the area of pattern recognition, clustering algorithms are a family of unsupervised classifiers designed with the aim to discover unrevealed structures in the data. While this is a never ending research topic, many methods have been developed with good theoretical and practical properties. One of such methods is based on self organizing maps (SOM), which have been successfully used for data clustering, using a two levels clustering approach. Newer on the field, clustering systems based on fuzzy logic improve the performance of traditional approaches. In this paper we combine both approaches. Most of the previous works on fuzzy clustering are based on fuzzy inference systems, but we propose the design of a new clustering system in which we use predicate fuzzy logic to perform the clustering task, being automatically designed based on data. Given a datum, degrees of truth of fuzzy predicates associated with each cluster are computed using continuous membership functions defined over data features. The predicate with the maximum degree of truth determines the cluster to be assigned. Knowledge is discovered from data, obtained using the SOM generalization aptitude and taking advantage of the well-known SOM abilities to discover natural data grouping when compared with direct clustering. In addition, the proposed approach adds linguistic interpretability when membership functions are analyzed by a field expert. We also present how this approach can be used to deal with partitioned data. Results show that clustering accuracy obtained is high and it outperforms other methods in the majority of datasets tested.
Fil: Meschino, Gustavo Javier. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; Argentina
Fil: Comas, Diego Sebastián. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Scandurra, Adriana Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Passoni, Lucía Isabel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
description In the area of pattern recognition, clustering algorithms are a family of unsupervised classifiers designed with the aim to discover unrevealed structures in the data. While this is a never ending research topic, many methods have been developed with good theoretical and practical properties. One of such methods is based on self organizing maps (SOM), which have been successfully used for data clustering, using a two levels clustering approach. Newer on the field, clustering systems based on fuzzy logic improve the performance of traditional approaches. In this paper we combine both approaches. Most of the previous works on fuzzy clustering are based on fuzzy inference systems, but we propose the design of a new clustering system in which we use predicate fuzzy logic to perform the clustering task, being automatically designed based on data. Given a datum, degrees of truth of fuzzy predicates associated with each cluster are computed using continuous membership functions defined over data features. The predicate with the maximum degree of truth determines the cluster to be assigned. Knowledge is discovered from data, obtained using the SOM generalization aptitude and taking advantage of the well-known SOM abilities to discover natural data grouping when compared with direct clustering. In addition, the proposed approach adds linguistic interpretability when membership functions are analyzed by a field expert. We also present how this approach can be used to deal with partitioned data. Results show that clustering accuracy obtained is high and it outperforms other methods in the majority of datasets tested.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38483
Meschino, Gustavo Javier; Comas, Diego Sebastián; Ballarin, Virginia Laura; Scandurra, Adriana Gabriela; Passoni, Lucía Isabel; Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps; Elsevier Science; Neurocomputing; 147; 1; 1-2015; 47-59
0925-2312
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38483
identifier_str_mv Meschino, Gustavo Javier; Comas, Diego Sebastián; Ballarin, Virginia Laura; Scandurra, Adriana Gabriela; Passoni, Lucía Isabel; Automatic design of interpretable fuzzy predicate systems for clustering using self-organizing maps; Elsevier Science; Neurocomputing; 147; 1; 1-2015; 47-59
0925-2312
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925231214005992
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2014.02.059
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269390047805440
score 13.13397