Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps

Autores
Comas, Diego Sebastián; Pastore, Juan Ignacio; Bouchet, Agustina; Ballarin, Virginia Laura; Meschino, Gustavo Javier
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In previous works, we proposed two methods for data clustering based on automatically discovered fuzzy predicates which were referred to as SOM-based Fuzzy Predicate Clustering (SFPC) [Meschino et al., Neurocomputing, 147, 47–59 (2015)] and Type-2 Data-based Fuzzy Predicate Clustering (T2-DFPC) [Comas et al., Expert Syst. Appl., 68, 136–150 (2017)]. In such methods, fuzzy predicates allow both data clustering and knowledge discovering about the obtained clusters. This last feature constitutes novelty comparing to other existing approaches and it is a major contribution in the data clustering field. Based on these previous methods, in the present paper a new automatic clustering method based on fuzzy predicates is proposed which uses Self-Organizing Maps (SOMs) and is called Type-2 SOM-based Fuzzy Predicate Clustering (T2-SFPC). The new method does not require any prior knowledge about the clustering addressed. First, a random partition is defined on the dataset to be clustered and SOMs are configured and trained using the resulting data subsets. Second, an automatic clustering approach is applied on the SOM codebooks, discovering representative data of the different clusters, which are called cluster prototypes. Third, interval type-2 membership function formed by Gaussian-shape sub-functions and fuzzy predicates are defined, allowing data clustering and its interpretation. The proposed method preserves all the advantages of the previous methods SFPC and T2-DFPC in relation to the knowledge extraction capabilities and their potential application on distributed clustering and parallel computing, but results obtained on several public datasets tested showed more compactness and separation of the clusters defined by the T2-SFPC, outperforming both the previous methods and the several classical clustering approaches tested, considering internal and external validation indices. Additionally, both clustering interpretation and optimization capabilities are improved by the proposed method when compared to the methods SFPC and T2-DFPC.
Fil: Comas, Diego Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina
Fil: Pastore, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina
Fil: Bouchet, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina
Fil: Ballarin, Virginia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina
Fil: Meschino, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; Argentina
Materia
Fuzzy Predicates
Interpretable Clustering
Interval Type-2 Fuzzy Logic
Knowledge Discovery
Self-Organizing Maps
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58354

id CONICETDig_5a7b8c8243ef6ad6f22c73e27c9d19b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/58354
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing mapsComas, Diego SebastiánPastore, Juan IgnacioBouchet, AgustinaBallarin, Virginia LauraMeschino, Gustavo JavierFuzzy PredicatesInterpretable ClusteringInterval Type-2 Fuzzy LogicKnowledge DiscoverySelf-Organizing Mapshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In previous works, we proposed two methods for data clustering based on automatically discovered fuzzy predicates which were referred to as SOM-based Fuzzy Predicate Clustering (SFPC) [Meschino et al., Neurocomputing, 147, 47–59 (2015)] and Type-2 Data-based Fuzzy Predicate Clustering (T2-DFPC) [Comas et al., Expert Syst. Appl., 68, 136–150 (2017)]. In such methods, fuzzy predicates allow both data clustering and knowledge discovering about the obtained clusters. This last feature constitutes novelty comparing to other existing approaches and it is a major contribution in the data clustering field. Based on these previous methods, in the present paper a new automatic clustering method based on fuzzy predicates is proposed which uses Self-Organizing Maps (SOMs) and is called Type-2 SOM-based Fuzzy Predicate Clustering (T2-SFPC). The new method does not require any prior knowledge about the clustering addressed. First, a random partition is defined on the dataset to be clustered and SOMs are configured and trained using the resulting data subsets. Second, an automatic clustering approach is applied on the SOM codebooks, discovering representative data of the different clusters, which are called cluster prototypes. Third, interval type-2 membership function formed by Gaussian-shape sub-functions and fuzzy predicates are defined, allowing data clustering and its interpretation. The proposed method preserves all the advantages of the previous methods SFPC and T2-DFPC in relation to the knowledge extraction capabilities and their potential application on distributed clustering and parallel computing, but results obtained on several public datasets tested showed more compactness and separation of the clusters defined by the T2-SFPC, outperforming both the previous methods and the several classical clustering approaches tested, considering internal and external validation indices. Additionally, both clustering interpretation and optimization capabilities are improved by the proposed method when compared to the methods SFPC and T2-DFPC.Fil: Comas, Diego Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; ArgentinaFil: Pastore, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; ArgentinaFil: Bouchet, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; ArgentinaFil: Ballarin, Virginia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; ArgentinaFil: Meschino, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; ArgentinaElsevier Science2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58354Comas, Diego Sebastián; Pastore, Juan Ignacio; Bouchet, Agustina; Ballarin, Virginia Laura; Meschino, Gustavo Javier; Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps; Elsevier Science; Knowledge-Based Systems; 133; 10-2017; 234-2540950-7051CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0950705117303313info:eu-repo/semantics/altIdentifier/doi/10.1016/j.knosys.2017.07.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:40Zoai:ri.conicet.gov.ar:11336/58354instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:41.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps
title Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps
spellingShingle Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps
Comas, Diego Sebastián
Fuzzy Predicates
Interpretable Clustering
Interval Type-2 Fuzzy Logic
Knowledge Discovery
Self-Organizing Maps
title_short Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps
title_full Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps
title_fullStr Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps
title_full_unstemmed Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps
title_sort Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps
dc.creator.none.fl_str_mv Comas, Diego Sebastián
Pastore, Juan Ignacio
Bouchet, Agustina
Ballarin, Virginia Laura
Meschino, Gustavo Javier
author Comas, Diego Sebastián
author_facet Comas, Diego Sebastián
Pastore, Juan Ignacio
Bouchet, Agustina
Ballarin, Virginia Laura
Meschino, Gustavo Javier
author_role author
author2 Pastore, Juan Ignacio
Bouchet, Agustina
Ballarin, Virginia Laura
Meschino, Gustavo Javier
author2_role author
author
author
author
dc.subject.none.fl_str_mv Fuzzy Predicates
Interpretable Clustering
Interval Type-2 Fuzzy Logic
Knowledge Discovery
Self-Organizing Maps
topic Fuzzy Predicates
Interpretable Clustering
Interval Type-2 Fuzzy Logic
Knowledge Discovery
Self-Organizing Maps
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In previous works, we proposed two methods for data clustering based on automatically discovered fuzzy predicates which were referred to as SOM-based Fuzzy Predicate Clustering (SFPC) [Meschino et al., Neurocomputing, 147, 47–59 (2015)] and Type-2 Data-based Fuzzy Predicate Clustering (T2-DFPC) [Comas et al., Expert Syst. Appl., 68, 136–150 (2017)]. In such methods, fuzzy predicates allow both data clustering and knowledge discovering about the obtained clusters. This last feature constitutes novelty comparing to other existing approaches and it is a major contribution in the data clustering field. Based on these previous methods, in the present paper a new automatic clustering method based on fuzzy predicates is proposed which uses Self-Organizing Maps (SOMs) and is called Type-2 SOM-based Fuzzy Predicate Clustering (T2-SFPC). The new method does not require any prior knowledge about the clustering addressed. First, a random partition is defined on the dataset to be clustered and SOMs are configured and trained using the resulting data subsets. Second, an automatic clustering approach is applied on the SOM codebooks, discovering representative data of the different clusters, which are called cluster prototypes. Third, interval type-2 membership function formed by Gaussian-shape sub-functions and fuzzy predicates are defined, allowing data clustering and its interpretation. The proposed method preserves all the advantages of the previous methods SFPC and T2-DFPC in relation to the knowledge extraction capabilities and their potential application on distributed clustering and parallel computing, but results obtained on several public datasets tested showed more compactness and separation of the clusters defined by the T2-SFPC, outperforming both the previous methods and the several classical clustering approaches tested, considering internal and external validation indices. Additionally, both clustering interpretation and optimization capabilities are improved by the proposed method when compared to the methods SFPC and T2-DFPC.
Fil: Comas, Diego Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina
Fil: Pastore, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina
Fil: Bouchet, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina
Fil: Ballarin, Virginia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina
Fil: Meschino, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica.; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; Argentina
description In previous works, we proposed two methods for data clustering based on automatically discovered fuzzy predicates which were referred to as SOM-based Fuzzy Predicate Clustering (SFPC) [Meschino et al., Neurocomputing, 147, 47–59 (2015)] and Type-2 Data-based Fuzzy Predicate Clustering (T2-DFPC) [Comas et al., Expert Syst. Appl., 68, 136–150 (2017)]. In such methods, fuzzy predicates allow both data clustering and knowledge discovering about the obtained clusters. This last feature constitutes novelty comparing to other existing approaches and it is a major contribution in the data clustering field. Based on these previous methods, in the present paper a new automatic clustering method based on fuzzy predicates is proposed which uses Self-Organizing Maps (SOMs) and is called Type-2 SOM-based Fuzzy Predicate Clustering (T2-SFPC). The new method does not require any prior knowledge about the clustering addressed. First, a random partition is defined on the dataset to be clustered and SOMs are configured and trained using the resulting data subsets. Second, an automatic clustering approach is applied on the SOM codebooks, discovering representative data of the different clusters, which are called cluster prototypes. Third, interval type-2 membership function formed by Gaussian-shape sub-functions and fuzzy predicates are defined, allowing data clustering and its interpretation. The proposed method preserves all the advantages of the previous methods SFPC and T2-DFPC in relation to the knowledge extraction capabilities and their potential application on distributed clustering and parallel computing, but results obtained on several public datasets tested showed more compactness and separation of the clusters defined by the T2-SFPC, outperforming both the previous methods and the several classical clustering approaches tested, considering internal and external validation indices. Additionally, both clustering interpretation and optimization capabilities are improved by the proposed method when compared to the methods SFPC and T2-DFPC.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58354
Comas, Diego Sebastián; Pastore, Juan Ignacio; Bouchet, Agustina; Ballarin, Virginia Laura; Meschino, Gustavo Javier; Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps; Elsevier Science; Knowledge-Based Systems; 133; 10-2017; 234-254
0950-7051
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58354
identifier_str_mv Comas, Diego Sebastián; Pastore, Juan Ignacio; Bouchet, Agustina; Ballarin, Virginia Laura; Meschino, Gustavo Javier; Interpretable interval type-2 fuzzy predicates for data clustering: A new automatic generation method based on self-organizing maps; Elsevier Science; Knowledge-Based Systems; 133; 10-2017; 234-254
0950-7051
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0950705117303313
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.knosys.2017.07.012
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268616489172992
score 13.13397