Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast

Autores
Thoke, Henrik S.; Bagatolli, Luis Alberto; Olsen, Lars F.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Water is involved in all aspects of biological activity, both as a solvent and as a reactant. It is hypothesized that intracellular water is in a highly structured state due to the high concentrations of macromolecules in the cell and that this may change the activity of intracellular enzymes due to altered binding affinities and allosteric regulations. Here we first investigate the kinetics of two glycolytic enzymes in artificially crowded aqueous solutions and show that crowding does indeed change their kinetics. Based on our kinetic measurements we propose a new model of oscillating glycolysis that instead of Michaelis-Menten or Monod-Wyman-Changeux kinetics uses the Yang-Ling adsorption isotherm introduced by G. Ling in the frame of the Association-Induction (AI) hypothesis. Using this model, we can reproduce previous experimental observations of the coupling of glycolytic oscillations and intracellular water dynamics, e.g., (i) during the metabolic oscillations, the latter variable oscillates in phase with ATP activity, and (ii) the emergence of glycolytic oscillations largely depends on the extent of intracellular water dipolar relaxation in cells in the resting state. Our results support the view that the extent of intracellular water dipolar relaxation is regulated by the ability of cytoplasmic proteins to polarize intracellular water with the assistance of ATP, as suggested in the AI hypothesis. This hypothesis may be relevant to the interpretation of many other biological oscillators, including cell signalling processes.
Fil: Thoke, Henrik S.. University Of Southern Denmark; Dinamarca
Fil: Bagatolli, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina
Fil: Olsen, Lars F.. University Of Southern Denmark; Dinamarca
Materia
oscillating glycolisis
intracellular water
molecular crowding
Yang-Ling isotherm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96877

id CONICETDig_b23b14b00d56b94837b524e79b43f84c
oai_identifier_str oai:ri.conicet.gov.ar:11336/96877
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeastThoke, Henrik S.Bagatolli, Luis AlbertoOlsen, Lars F.oscillating glycolisisintracellular watermolecular crowdingYang-Ling isothermhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Water is involved in all aspects of biological activity, both as a solvent and as a reactant. It is hypothesized that intracellular water is in a highly structured state due to the high concentrations of macromolecules in the cell and that this may change the activity of intracellular enzymes due to altered binding affinities and allosteric regulations. Here we first investigate the kinetics of two glycolytic enzymes in artificially crowded aqueous solutions and show that crowding does indeed change their kinetics. Based on our kinetic measurements we propose a new model of oscillating glycolysis that instead of Michaelis-Menten or Monod-Wyman-Changeux kinetics uses the Yang-Ling adsorption isotherm introduced by G. Ling in the frame of the Association-Induction (AI) hypothesis. Using this model, we can reproduce previous experimental observations of the coupling of glycolytic oscillations and intracellular water dynamics, e.g., (i) during the metabolic oscillations, the latter variable oscillates in phase with ATP activity, and (ii) the emergence of glycolytic oscillations largely depends on the extent of intracellular water dipolar relaxation in cells in the resting state. Our results support the view that the extent of intracellular water dipolar relaxation is regulated by the ability of cytoplasmic proteins to polarize intracellular water with the assistance of ATP, as suggested in the AI hypothesis. This hypothesis may be relevant to the interpretation of many other biological oscillators, including cell signalling processes.Fil: Thoke, Henrik S.. University Of Southern Denmark; DinamarcaFil: Bagatolli, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Olsen, Lars F.. University Of Southern Denmark; DinamarcaRoyal Society of Chemistry2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96877Thoke, Henrik S.; Bagatolli, Luis Alberto; Olsen, Lars F.; Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast; Royal Society of Chemistry; Integrative Biology; 10; 10; 10-2018; 587-5971757-9694CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C8IB00099Ainfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/ib/article/10/10/587/5261228info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/ib/c8ib00099ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:15Zoai:ri.conicet.gov.ar:11336/96877instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:15.432CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast
title Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast
spellingShingle Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast
Thoke, Henrik S.
oscillating glycolisis
intracellular water
molecular crowding
Yang-Ling isotherm
title_short Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast
title_full Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast
title_fullStr Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast
title_full_unstemmed Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast
title_sort Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast
dc.creator.none.fl_str_mv Thoke, Henrik S.
Bagatolli, Luis Alberto
Olsen, Lars F.
author Thoke, Henrik S.
author_facet Thoke, Henrik S.
Bagatolli, Luis Alberto
Olsen, Lars F.
author_role author
author2 Bagatolli, Luis Alberto
Olsen, Lars F.
author2_role author
author
dc.subject.none.fl_str_mv oscillating glycolisis
intracellular water
molecular crowding
Yang-Ling isotherm
topic oscillating glycolisis
intracellular water
molecular crowding
Yang-Ling isotherm
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Water is involved in all aspects of biological activity, both as a solvent and as a reactant. It is hypothesized that intracellular water is in a highly structured state due to the high concentrations of macromolecules in the cell and that this may change the activity of intracellular enzymes due to altered binding affinities and allosteric regulations. Here we first investigate the kinetics of two glycolytic enzymes in artificially crowded aqueous solutions and show that crowding does indeed change their kinetics. Based on our kinetic measurements we propose a new model of oscillating glycolysis that instead of Michaelis-Menten or Monod-Wyman-Changeux kinetics uses the Yang-Ling adsorption isotherm introduced by G. Ling in the frame of the Association-Induction (AI) hypothesis. Using this model, we can reproduce previous experimental observations of the coupling of glycolytic oscillations and intracellular water dynamics, e.g., (i) during the metabolic oscillations, the latter variable oscillates in phase with ATP activity, and (ii) the emergence of glycolytic oscillations largely depends on the extent of intracellular water dipolar relaxation in cells in the resting state. Our results support the view that the extent of intracellular water dipolar relaxation is regulated by the ability of cytoplasmic proteins to polarize intracellular water with the assistance of ATP, as suggested in the AI hypothesis. This hypothesis may be relevant to the interpretation of many other biological oscillators, including cell signalling processes.
Fil: Thoke, Henrik S.. University Of Southern Denmark; Dinamarca
Fil: Bagatolli, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina
Fil: Olsen, Lars F.. University Of Southern Denmark; Dinamarca
description Water is involved in all aspects of biological activity, both as a solvent and as a reactant. It is hypothesized that intracellular water is in a highly structured state due to the high concentrations of macromolecules in the cell and that this may change the activity of intracellular enzymes due to altered binding affinities and allosteric regulations. Here we first investigate the kinetics of two glycolytic enzymes in artificially crowded aqueous solutions and show that crowding does indeed change their kinetics. Based on our kinetic measurements we propose a new model of oscillating glycolysis that instead of Michaelis-Menten or Monod-Wyman-Changeux kinetics uses the Yang-Ling adsorption isotherm introduced by G. Ling in the frame of the Association-Induction (AI) hypothesis. Using this model, we can reproduce previous experimental observations of the coupling of glycolytic oscillations and intracellular water dynamics, e.g., (i) during the metabolic oscillations, the latter variable oscillates in phase with ATP activity, and (ii) the emergence of glycolytic oscillations largely depends on the extent of intracellular water dipolar relaxation in cells in the resting state. Our results support the view that the extent of intracellular water dipolar relaxation is regulated by the ability of cytoplasmic proteins to polarize intracellular water with the assistance of ATP, as suggested in the AI hypothesis. This hypothesis may be relevant to the interpretation of many other biological oscillators, including cell signalling processes.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96877
Thoke, Henrik S.; Bagatolli, Luis Alberto; Olsen, Lars F.; Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast; Royal Society of Chemistry; Integrative Biology; 10; 10; 10-2018; 587-597
1757-9694
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96877
identifier_str_mv Thoke, Henrik S.; Bagatolli, Luis Alberto; Olsen, Lars F.; Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast; Royal Society of Chemistry; Integrative Biology; 10; 10; 10-2018; 587-597
1757-9694
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/C8IB00099A
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/ib/article/10/10/587/5261228
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/ib/c8ib00099a
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613648928997376
score 13.070432