Effect of PEG-induced molecular crowding on β-Gal thermal stability

Autores
Rodriguez, Carolina Mercedes; Perillo, Maria Angelica; Nolan, María Verónica
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The yeast β-galactosidase or lactase [EC 3.2.1.23] (β-Gal) is a soluble enzyme capable of catalyzing lactose hydrolysis into its constitutive monosaccharides: glucose and galactose. This enzyme has a commercial application for lactose hydrolysis in dairy products. Milk processing with b-Gal before milk is commercialized is important to solve nutritional (lactose intolerance) and technological (crystallization of dairy products) problems. In this context, it is important that the activity of β-Gal be evaluated in crowding media systems. In this work we investigate the effect that molecular crowding induces on thermal stability of β-galactosidase from Kluyveromices lactis. PEG6000, a non-charged highly water-soluble polymer with well-known effects on water dynamics was used to produce the crowded environment. The effect of PEG on β-Gal thermal stability was studied with two different approaches. In the first one, β-Gal samples both in the absence or in the presence of PEG6000 were preincubated at different temperatures in a range from 37 to 75 °C. After that, the system was returned to optimal conditions and enzymatic activity was tested. Results obtained showed that β-Gal stability was enhanced in molecular crowded environment. The enzyme maintained its activity when it was pre-incubated at temperatures 5 degrees higher in the presence than in the absence of molecular crowding agent. In the second approach, the inactivation kinetic was studied: in this type of experiments, the enzyme was pre-incubated at 37 or at 50 °C during different periods of time and after that, the enzymatic activity was measured in optimal conditions. Results obtained show again that molecular crowding conditions protect the enzyme from heat denaturation. In this case, it was observed that the enzyme maintains its activity even when it is subjected for a considerable period of time at high temperature when it is in the presence of the molecular crowding agent. In both cases, the enzymatic reaction was evaluated by measuring kinetic parameters of β-Gal against an artificial substrate (ONPG). Changes in protein compactness could be the responsible for the qualitative change behavior observed at the molecular crowding conditions assayed.
Fil: Rodriguez, Carolina Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Perillo, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Nolan, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
XLVIII Reunión Anual de la Sociedad Argentina de Biofísica
San Luis
Argentina
Sociedad Argentina de Biofísica
Universidad Nacional de San Luis
Materia
Beta-galactosidase
Molecular crowding
Enzymatic activity
Thermal stability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/154220

id CONICETDig_290e3268d802a9e62a7cbf9b896d1cd2
oai_identifier_str oai:ri.conicet.gov.ar:11336/154220
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of PEG-induced molecular crowding on β-Gal thermal stabilityRodriguez, Carolina MercedesPerillo, Maria AngelicaNolan, María VerónicaBeta-galactosidaseMolecular crowdingEnzymatic activityThermal stabilityhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The yeast β-galactosidase or lactase [EC 3.2.1.23] (β-Gal) is a soluble enzyme capable of catalyzing lactose hydrolysis into its constitutive monosaccharides: glucose and galactose. This enzyme has a commercial application for lactose hydrolysis in dairy products. Milk processing with b-Gal before milk is commercialized is important to solve nutritional (lactose intolerance) and technological (crystallization of dairy products) problems. In this context, it is important that the activity of β-Gal be evaluated in crowding media systems. In this work we investigate the effect that molecular crowding induces on thermal stability of β-galactosidase from Kluyveromices lactis. PEG6000, a non-charged highly water-soluble polymer with well-known effects on water dynamics was used to produce the crowded environment. The effect of PEG on β-Gal thermal stability was studied with two different approaches. In the first one, β-Gal samples both in the absence or in the presence of PEG6000 were preincubated at different temperatures in a range from 37 to 75 °C. After that, the system was returned to optimal conditions and enzymatic activity was tested. Results obtained showed that β-Gal stability was enhanced in molecular crowded environment. The enzyme maintained its activity when it was pre-incubated at temperatures 5 degrees higher in the presence than in the absence of molecular crowding agent. In the second approach, the inactivation kinetic was studied: in this type of experiments, the enzyme was pre-incubated at 37 or at 50 °C during different periods of time and after that, the enzymatic activity was measured in optimal conditions. Results obtained show again that molecular crowding conditions protect the enzyme from heat denaturation. In this case, it was observed that the enzyme maintains its activity even when it is subjected for a considerable period of time at high temperature when it is in the presence of the molecular crowding agent. In both cases, the enzymatic reaction was evaluated by measuring kinetic parameters of β-Gal against an artificial substrate (ONPG). Changes in protein compactness could be the responsible for the qualitative change behavior observed at the molecular crowding conditions assayed.Fil: Rodriguez, Carolina Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Perillo, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Nolan, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaXLVIII Reunión Anual de la Sociedad Argentina de BiofísicaSan LuisArgentinaSociedad Argentina de BiofísicaUniversidad Nacional de San LuisSociedad Argentina de BiofísicaAndujar, Sebastian Antonio2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154220Effect of PEG-induced molecular crowding on β-Gal thermal stability; XLVIII Reunión Anual de la Sociedad Argentina de Biofísica; San Luis; Argentina; 2019; 168-168978-987-27591-7-9CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://biofisica.org.ar/publicaciones/libros-de-resumenes/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:04:51Zoai:ri.conicet.gov.ar:11336/154220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:04:52.137CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of PEG-induced molecular crowding on β-Gal thermal stability
title Effect of PEG-induced molecular crowding on β-Gal thermal stability
spellingShingle Effect of PEG-induced molecular crowding on β-Gal thermal stability
Rodriguez, Carolina Mercedes
Beta-galactosidase
Molecular crowding
Enzymatic activity
Thermal stability
title_short Effect of PEG-induced molecular crowding on β-Gal thermal stability
title_full Effect of PEG-induced molecular crowding on β-Gal thermal stability
title_fullStr Effect of PEG-induced molecular crowding on β-Gal thermal stability
title_full_unstemmed Effect of PEG-induced molecular crowding on β-Gal thermal stability
title_sort Effect of PEG-induced molecular crowding on β-Gal thermal stability
dc.creator.none.fl_str_mv Rodriguez, Carolina Mercedes
Perillo, Maria Angelica
Nolan, María Verónica
author Rodriguez, Carolina Mercedes
author_facet Rodriguez, Carolina Mercedes
Perillo, Maria Angelica
Nolan, María Verónica
author_role author
author2 Perillo, Maria Angelica
Nolan, María Verónica
author2_role author
author
dc.contributor.none.fl_str_mv Andujar, Sebastian Antonio
dc.subject.none.fl_str_mv Beta-galactosidase
Molecular crowding
Enzymatic activity
Thermal stability
topic Beta-galactosidase
Molecular crowding
Enzymatic activity
Thermal stability
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The yeast β-galactosidase or lactase [EC 3.2.1.23] (β-Gal) is a soluble enzyme capable of catalyzing lactose hydrolysis into its constitutive monosaccharides: glucose and galactose. This enzyme has a commercial application for lactose hydrolysis in dairy products. Milk processing with b-Gal before milk is commercialized is important to solve nutritional (lactose intolerance) and technological (crystallization of dairy products) problems. In this context, it is important that the activity of β-Gal be evaluated in crowding media systems. In this work we investigate the effect that molecular crowding induces on thermal stability of β-galactosidase from Kluyveromices lactis. PEG6000, a non-charged highly water-soluble polymer with well-known effects on water dynamics was used to produce the crowded environment. The effect of PEG on β-Gal thermal stability was studied with two different approaches. In the first one, β-Gal samples both in the absence or in the presence of PEG6000 were preincubated at different temperatures in a range from 37 to 75 °C. After that, the system was returned to optimal conditions and enzymatic activity was tested. Results obtained showed that β-Gal stability was enhanced in molecular crowded environment. The enzyme maintained its activity when it was pre-incubated at temperatures 5 degrees higher in the presence than in the absence of molecular crowding agent. In the second approach, the inactivation kinetic was studied: in this type of experiments, the enzyme was pre-incubated at 37 or at 50 °C during different periods of time and after that, the enzymatic activity was measured in optimal conditions. Results obtained show again that molecular crowding conditions protect the enzyme from heat denaturation. In this case, it was observed that the enzyme maintains its activity even when it is subjected for a considerable period of time at high temperature when it is in the presence of the molecular crowding agent. In both cases, the enzymatic reaction was evaluated by measuring kinetic parameters of β-Gal against an artificial substrate (ONPG). Changes in protein compactness could be the responsible for the qualitative change behavior observed at the molecular crowding conditions assayed.
Fil: Rodriguez, Carolina Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Perillo, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Nolan, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
XLVIII Reunión Anual de la Sociedad Argentina de Biofísica
San Luis
Argentina
Sociedad Argentina de Biofísica
Universidad Nacional de San Luis
description The yeast β-galactosidase or lactase [EC 3.2.1.23] (β-Gal) is a soluble enzyme capable of catalyzing lactose hydrolysis into its constitutive monosaccharides: glucose and galactose. This enzyme has a commercial application for lactose hydrolysis in dairy products. Milk processing with b-Gal before milk is commercialized is important to solve nutritional (lactose intolerance) and technological (crystallization of dairy products) problems. In this context, it is important that the activity of β-Gal be evaluated in crowding media systems. In this work we investigate the effect that molecular crowding induces on thermal stability of β-galactosidase from Kluyveromices lactis. PEG6000, a non-charged highly water-soluble polymer with well-known effects on water dynamics was used to produce the crowded environment. The effect of PEG on β-Gal thermal stability was studied with two different approaches. In the first one, β-Gal samples both in the absence or in the presence of PEG6000 were preincubated at different temperatures in a range from 37 to 75 °C. After that, the system was returned to optimal conditions and enzymatic activity was tested. Results obtained showed that β-Gal stability was enhanced in molecular crowded environment. The enzyme maintained its activity when it was pre-incubated at temperatures 5 degrees higher in the presence than in the absence of molecular crowding agent. In the second approach, the inactivation kinetic was studied: in this type of experiments, the enzyme was pre-incubated at 37 or at 50 °C during different periods of time and after that, the enzymatic activity was measured in optimal conditions. Results obtained show again that molecular crowding conditions protect the enzyme from heat denaturation. In this case, it was observed that the enzyme maintains its activity even when it is subjected for a considerable period of time at high temperature when it is in the presence of the molecular crowding agent. In both cases, the enzymatic reaction was evaluated by measuring kinetic parameters of β-Gal against an artificial substrate (ONPG). Changes in protein compactness could be the responsible for the qualitative change behavior observed at the molecular crowding conditions assayed.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/154220
Effect of PEG-induced molecular crowding on β-Gal thermal stability; XLVIII Reunión Anual de la Sociedad Argentina de Biofísica; San Luis; Argentina; 2019; 168-168
978-987-27591-7-9
CONICET Digital
CONICET
url http://hdl.handle.net/11336/154220
identifier_str_mv Effect of PEG-induced molecular crowding on β-Gal thermal stability; XLVIII Reunión Anual de la Sociedad Argentina de Biofísica; San Luis; Argentina; 2019; 168-168
978-987-27591-7-9
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://biofisica.org.ar/publicaciones/libros-de-resumenes/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Sociedad Argentina de Biofísica
publisher.none.fl_str_mv Sociedad Argentina de Biofísica
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781315169386496
score 12.982451