Towards a Dynamic Analysis of Weighted Networks in Biogeography
- Autores
- Dos Santos, Daniel Andrés; Cuezzo, Maria Gabriela; Reynaga, Maria Celina; Dominguez, Eduardo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An improvement to the Network Analysis Method (NAM) in Biogeography based on weighted inference and dynamic exploration of sympatry networks is proposed. Intricate distributions of species result in a reticulated structure of spatial associations. Species are geographically connected through sympatry links forming an overall natural network in biogeography. Spatial records are the signals that provide evidence to infer these sympatry links in the network. Punctual data are independent of a priori area determination. NAM is oriented to detect groups of species embedded into the global network that are internally sustained by sympatric cohesiveness but weakly connected (or disconnected) to outgroup entities. These groups, called units of co-occurrence (UCs), are segregated through the iterative removal of intermediary species according to their betweenness scores. Instances of analysis of the original NAM are improved through the following changes and extensions: (i) inference of weighted sympatry networks using new measures sensitive to the strength of overlap and topological resemblance between set of points; (ii) construction of a basal network discriminating major from minor sympatry associations; (iii) evaluation of the entire process of iterative removal of intermediary species for the selection of UCs found on different subnetworks; (iv) network partitioning based on the intrinsic cohesiveness of the UCs; (v) production of a graphical tool (cleavogram) depicting the structural changes of the network along the removal process. Improvements are tested using real and hypothetical data sets. Resolution of patterns is notably increased due to a more accurate recognition of allopatric patterns and the possibility of segregating spatially overlapped UCs. As in original NAM, spatial expressions of UCs are building blocks for biogeography supported by strictly endemic and connected species through sympatry paths.
Fil: Dos Santos, Daniel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; Argentina
Fil: Cuezzo, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; Argentina
Fil: Reynaga, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; Argentina
Fil: Dominguez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; Argentina - Materia
-
Clusters Pattern Recognition
Cohesiveness
Dot Maps
Nam
Spatial Point Process
Sympatry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69946
Ver los metadatos del registro completo
id |
CONICETDig_b22f13cb4130a135b15ff2c82345c0af |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69946 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Towards a Dynamic Analysis of Weighted Networks in BiogeographyDos Santos, Daniel AndrésCuezzo, Maria GabrielaReynaga, Maria CelinaDominguez, EduardoClusters Pattern RecognitionCohesivenessDot MapsNamSpatial Point ProcessSympatryhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1An improvement to the Network Analysis Method (NAM) in Biogeography based on weighted inference and dynamic exploration of sympatry networks is proposed. Intricate distributions of species result in a reticulated structure of spatial associations. Species are geographically connected through sympatry links forming an overall natural network in biogeography. Spatial records are the signals that provide evidence to infer these sympatry links in the network. Punctual data are independent of a priori area determination. NAM is oriented to detect groups of species embedded into the global network that are internally sustained by sympatric cohesiveness but weakly connected (or disconnected) to outgroup entities. These groups, called units of co-occurrence (UCs), are segregated through the iterative removal of intermediary species according to their betweenness scores. Instances of analysis of the original NAM are improved through the following changes and extensions: (i) inference of weighted sympatry networks using new measures sensitive to the strength of overlap and topological resemblance between set of points; (ii) construction of a basal network discriminating major from minor sympatry associations; (iii) evaluation of the entire process of iterative removal of intermediary species for the selection of UCs found on different subnetworks; (iv) network partitioning based on the intrinsic cohesiveness of the UCs; (v) production of a graphical tool (cleavogram) depicting the structural changes of the network along the removal process. Improvements are tested using real and hypothetical data sets. Resolution of patterns is notably increased due to a more accurate recognition of allopatric patterns and the possibility of segregating spatially overlapped UCs. As in original NAM, spatial expressions of UCs are building blocks for biogeography supported by strictly endemic and connected species through sympatry paths.Fil: Dos Santos, Daniel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; ArgentinaFil: Cuezzo, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; ArgentinaFil: Reynaga, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; ArgentinaFil: Dominguez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; ArgentinaOxford University Press2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69946Dos Santos, Daniel Andrés; Cuezzo, Maria Gabriela; Reynaga, Maria Celina; Dominguez, Eduardo; Towards a Dynamic Analysis of Weighted Networks in Biogeography; Oxford University Press; Systematic Biology; 61; 2; 3-2012; 240-2521063-51571076-836XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/sysbio/syr098info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/sysbio/article-pdf/61/2/240/24563160/syr098.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:13:29Zoai:ri.conicet.gov.ar:11336/69946instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:13:29.477CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Towards a Dynamic Analysis of Weighted Networks in Biogeography |
title |
Towards a Dynamic Analysis of Weighted Networks in Biogeography |
spellingShingle |
Towards a Dynamic Analysis of Weighted Networks in Biogeography Dos Santos, Daniel Andrés Clusters Pattern Recognition Cohesiveness Dot Maps Nam Spatial Point Process Sympatry |
title_short |
Towards a Dynamic Analysis of Weighted Networks in Biogeography |
title_full |
Towards a Dynamic Analysis of Weighted Networks in Biogeography |
title_fullStr |
Towards a Dynamic Analysis of Weighted Networks in Biogeography |
title_full_unstemmed |
Towards a Dynamic Analysis of Weighted Networks in Biogeography |
title_sort |
Towards a Dynamic Analysis of Weighted Networks in Biogeography |
dc.creator.none.fl_str_mv |
Dos Santos, Daniel Andrés Cuezzo, Maria Gabriela Reynaga, Maria Celina Dominguez, Eduardo |
author |
Dos Santos, Daniel Andrés |
author_facet |
Dos Santos, Daniel Andrés Cuezzo, Maria Gabriela Reynaga, Maria Celina Dominguez, Eduardo |
author_role |
author |
author2 |
Cuezzo, Maria Gabriela Reynaga, Maria Celina Dominguez, Eduardo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Clusters Pattern Recognition Cohesiveness Dot Maps Nam Spatial Point Process Sympatry |
topic |
Clusters Pattern Recognition Cohesiveness Dot Maps Nam Spatial Point Process Sympatry |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An improvement to the Network Analysis Method (NAM) in Biogeography based on weighted inference and dynamic exploration of sympatry networks is proposed. Intricate distributions of species result in a reticulated structure of spatial associations. Species are geographically connected through sympatry links forming an overall natural network in biogeography. Spatial records are the signals that provide evidence to infer these sympatry links in the network. Punctual data are independent of a priori area determination. NAM is oriented to detect groups of species embedded into the global network that are internally sustained by sympatric cohesiveness but weakly connected (or disconnected) to outgroup entities. These groups, called units of co-occurrence (UCs), are segregated through the iterative removal of intermediary species according to their betweenness scores. Instances of analysis of the original NAM are improved through the following changes and extensions: (i) inference of weighted sympatry networks using new measures sensitive to the strength of overlap and topological resemblance between set of points; (ii) construction of a basal network discriminating major from minor sympatry associations; (iii) evaluation of the entire process of iterative removal of intermediary species for the selection of UCs found on different subnetworks; (iv) network partitioning based on the intrinsic cohesiveness of the UCs; (v) production of a graphical tool (cleavogram) depicting the structural changes of the network along the removal process. Improvements are tested using real and hypothetical data sets. Resolution of patterns is notably increased due to a more accurate recognition of allopatric patterns and the possibility of segregating spatially overlapped UCs. As in original NAM, spatial expressions of UCs are building blocks for biogeography supported by strictly endemic and connected species through sympatry paths. Fil: Dos Santos, Daniel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; Argentina Fil: Cuezzo, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; Argentina Fil: Reynaga, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; Argentina Fil: Dominguez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Biodiversidad Neotropical. Universidad Nacional de Tucuman. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Biodiversidad Neotropical. Instituto de Biodiversidad Neotropical; Argentina |
description |
An improvement to the Network Analysis Method (NAM) in Biogeography based on weighted inference and dynamic exploration of sympatry networks is proposed. Intricate distributions of species result in a reticulated structure of spatial associations. Species are geographically connected through sympatry links forming an overall natural network in biogeography. Spatial records are the signals that provide evidence to infer these sympatry links in the network. Punctual data are independent of a priori area determination. NAM is oriented to detect groups of species embedded into the global network that are internally sustained by sympatric cohesiveness but weakly connected (or disconnected) to outgroup entities. These groups, called units of co-occurrence (UCs), are segregated through the iterative removal of intermediary species according to their betweenness scores. Instances of analysis of the original NAM are improved through the following changes and extensions: (i) inference of weighted sympatry networks using new measures sensitive to the strength of overlap and topological resemblance between set of points; (ii) construction of a basal network discriminating major from minor sympatry associations; (iii) evaluation of the entire process of iterative removal of intermediary species for the selection of UCs found on different subnetworks; (iv) network partitioning based on the intrinsic cohesiveness of the UCs; (v) production of a graphical tool (cleavogram) depicting the structural changes of the network along the removal process. Improvements are tested using real and hypothetical data sets. Resolution of patterns is notably increased due to a more accurate recognition of allopatric patterns and the possibility of segregating spatially overlapped UCs. As in original NAM, spatial expressions of UCs are building blocks for biogeography supported by strictly endemic and connected species through sympatry paths. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69946 Dos Santos, Daniel Andrés; Cuezzo, Maria Gabriela; Reynaga, Maria Celina; Dominguez, Eduardo; Towards a Dynamic Analysis of Weighted Networks in Biogeography; Oxford University Press; Systematic Biology; 61; 2; 3-2012; 240-252 1063-5157 1076-836X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69946 |
identifier_str_mv |
Dos Santos, Daniel Andrés; Cuezzo, Maria Gabriela; Reynaga, Maria Celina; Dominguez, Eduardo; Towards a Dynamic Analysis of Weighted Networks in Biogeography; Oxford University Press; Systematic Biology; 61; 2; 3-2012; 240-252 1063-5157 1076-836X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/sysbio/syr098 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/sysbio/article-pdf/61/2/240/24563160/syr098.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083282498748416 |
score |
13.22299 |