A discontinuous Galerkin finite element model for river bed evolution under shallow flows

Autores
Tassi, P. A.; Rhebergen, S.; Vionnet, Carlos Alberto; Bokhove, O.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The accurate representation of morphodynamic processes and the ability to propagate changes in the riverbed over a wide range of space and time scales make the design and implementation of appropriate numerical schemes challenging. In particular, requirements of accuracy and stability for medium and long term simulations are difficult to meet. In this work, the derivation, design, and implementation of a discontinuous Galerkin finite element method (DGFEM) for sediment transport and bed evolution equations are presented. Numerical morphodynamic models involve a coupling between a hydrodynamic flow solver which acts as a driving force and a bed evolution model which accounts for sediment flux and bathymetry changes. A space DGFEM is presented based on an extended approach for systems of partial differential equations with non-conservative products, in combination with two intertwined Runge–Kutta time stepping schemes for the fast hydrodynamic and slow morphodynamic components. The resulting numerical scheme is verified by comparing simulations against (semi-)analytical solutions. These include the evolution of an initially symmetric, isolated bedform; the formation and propagation of a step in a straight channel due to a sudden overload of sediment discharge; the propagation of a travelling diffusive sediment wave in a straight channel; and, the evolution of an initially flat bed in a channel with a contraction. Finally, a comparison is made between a numerical simulation and field data of a trench excavated in the main channel of the Paraná river near Paraná city, Argentina.
Fil: Tassi, P. A.. Universidad Nacional del Litoral; Argentina. Universiteit Twente (ut);
Fil: Rhebergen, S.. Universiteit Twente (ut);
Fil: Vionnet, Carlos Alberto. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Bokhove, O.. Universiteit Twente (ut);
Materia
Discontinuous Galerkin finite element method
Morphodynamic model
Shallow flows
Non-conservative products
Multiphase physics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242125

id CONICETDig_b1f315b0698ea919e24de4b036671e46
oai_identifier_str oai:ri.conicet.gov.ar:11336/242125
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A discontinuous Galerkin finite element model for river bed evolution under shallow flowsTassi, P. A.Rhebergen, S.Vionnet, Carlos AlbertoBokhove, O.Discontinuous Galerkin finite element methodMorphodynamic modelShallow flowsNon-conservative productsMultiphase physicshttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2The accurate representation of morphodynamic processes and the ability to propagate changes in the riverbed over a wide range of space and time scales make the design and implementation of appropriate numerical schemes challenging. In particular, requirements of accuracy and stability for medium and long term simulations are difficult to meet. In this work, the derivation, design, and implementation of a discontinuous Galerkin finite element method (DGFEM) for sediment transport and bed evolution equations are presented. Numerical morphodynamic models involve a coupling between a hydrodynamic flow solver which acts as a driving force and a bed evolution model which accounts for sediment flux and bathymetry changes. A space DGFEM is presented based on an extended approach for systems of partial differential equations with non-conservative products, in combination with two intertwined Runge–Kutta time stepping schemes for the fast hydrodynamic and slow morphodynamic components. The resulting numerical scheme is verified by comparing simulations against (semi-)analytical solutions. These include the evolution of an initially symmetric, isolated bedform; the formation and propagation of a step in a straight channel due to a sudden overload of sediment discharge; the propagation of a travelling diffusive sediment wave in a straight channel; and, the evolution of an initially flat bed in a channel with a contraction. Finally, a comparison is made between a numerical simulation and field data of a trench excavated in the main channel of the Paraná river near Paraná city, Argentina.Fil: Tassi, P. A.. Universidad Nacional del Litoral; Argentina. Universiteit Twente (ut);Fil: Rhebergen, S.. Universiteit Twente (ut);Fil: Vionnet, Carlos Alberto. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Bokhove, O.. Universiteit Twente (ut);Elsevier Science SA2008-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242125Tassi, P. A.; Rhebergen, S.; Vionnet, Carlos Alberto; Bokhove, O.; A discontinuous Galerkin finite element model for river bed evolution under shallow flows; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 197; 33-40; 6-2008; 2930-29470045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782508000510info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2008.01.023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:06:26Zoai:ri.conicet.gov.ar:11336/242125instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:06:26.292CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A discontinuous Galerkin finite element model for river bed evolution under shallow flows
title A discontinuous Galerkin finite element model for river bed evolution under shallow flows
spellingShingle A discontinuous Galerkin finite element model for river bed evolution under shallow flows
Tassi, P. A.
Discontinuous Galerkin finite element method
Morphodynamic model
Shallow flows
Non-conservative products
Multiphase physics
title_short A discontinuous Galerkin finite element model for river bed evolution under shallow flows
title_full A discontinuous Galerkin finite element model for river bed evolution under shallow flows
title_fullStr A discontinuous Galerkin finite element model for river bed evolution under shallow flows
title_full_unstemmed A discontinuous Galerkin finite element model for river bed evolution under shallow flows
title_sort A discontinuous Galerkin finite element model for river bed evolution under shallow flows
dc.creator.none.fl_str_mv Tassi, P. A.
Rhebergen, S.
Vionnet, Carlos Alberto
Bokhove, O.
author Tassi, P. A.
author_facet Tassi, P. A.
Rhebergen, S.
Vionnet, Carlos Alberto
Bokhove, O.
author_role author
author2 Rhebergen, S.
Vionnet, Carlos Alberto
Bokhove, O.
author2_role author
author
author
dc.subject.none.fl_str_mv Discontinuous Galerkin finite element method
Morphodynamic model
Shallow flows
Non-conservative products
Multiphase physics
topic Discontinuous Galerkin finite element method
Morphodynamic model
Shallow flows
Non-conservative products
Multiphase physics
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The accurate representation of morphodynamic processes and the ability to propagate changes in the riverbed over a wide range of space and time scales make the design and implementation of appropriate numerical schemes challenging. In particular, requirements of accuracy and stability for medium and long term simulations are difficult to meet. In this work, the derivation, design, and implementation of a discontinuous Galerkin finite element method (DGFEM) for sediment transport and bed evolution equations are presented. Numerical morphodynamic models involve a coupling between a hydrodynamic flow solver which acts as a driving force and a bed evolution model which accounts for sediment flux and bathymetry changes. A space DGFEM is presented based on an extended approach for systems of partial differential equations with non-conservative products, in combination with two intertwined Runge–Kutta time stepping schemes for the fast hydrodynamic and slow morphodynamic components. The resulting numerical scheme is verified by comparing simulations against (semi-)analytical solutions. These include the evolution of an initially symmetric, isolated bedform; the formation and propagation of a step in a straight channel due to a sudden overload of sediment discharge; the propagation of a travelling diffusive sediment wave in a straight channel; and, the evolution of an initially flat bed in a channel with a contraction. Finally, a comparison is made between a numerical simulation and field data of a trench excavated in the main channel of the Paraná river near Paraná city, Argentina.
Fil: Tassi, P. A.. Universidad Nacional del Litoral; Argentina. Universiteit Twente (ut);
Fil: Rhebergen, S.. Universiteit Twente (ut);
Fil: Vionnet, Carlos Alberto. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Bokhove, O.. Universiteit Twente (ut);
description The accurate representation of morphodynamic processes and the ability to propagate changes in the riverbed over a wide range of space and time scales make the design and implementation of appropriate numerical schemes challenging. In particular, requirements of accuracy and stability for medium and long term simulations are difficult to meet. In this work, the derivation, design, and implementation of a discontinuous Galerkin finite element method (DGFEM) for sediment transport and bed evolution equations are presented. Numerical morphodynamic models involve a coupling between a hydrodynamic flow solver which acts as a driving force and a bed evolution model which accounts for sediment flux and bathymetry changes. A space DGFEM is presented based on an extended approach for systems of partial differential equations with non-conservative products, in combination with two intertwined Runge–Kutta time stepping schemes for the fast hydrodynamic and slow morphodynamic components. The resulting numerical scheme is verified by comparing simulations against (semi-)analytical solutions. These include the evolution of an initially symmetric, isolated bedform; the formation and propagation of a step in a straight channel due to a sudden overload of sediment discharge; the propagation of a travelling diffusive sediment wave in a straight channel; and, the evolution of an initially flat bed in a channel with a contraction. Finally, a comparison is made between a numerical simulation and field data of a trench excavated in the main channel of the Paraná river near Paraná city, Argentina.
publishDate 2008
dc.date.none.fl_str_mv 2008-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242125
Tassi, P. A.; Rhebergen, S.; Vionnet, Carlos Alberto; Bokhove, O.; A discontinuous Galerkin finite element model for river bed evolution under shallow flows; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 197; 33-40; 6-2008; 2930-2947
0045-7825
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242125
identifier_str_mv Tassi, P. A.; Rhebergen, S.; Vionnet, Carlos Alberto; Bokhove, O.; A discontinuous Galerkin finite element model for river bed evolution under shallow flows; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 197; 33-40; 6-2008; 2930-2947
0045-7825
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782508000510
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2008.01.023
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083207538147328
score 13.22299