Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian
- Autores
- del Pezzo, Leandro Martin; Lombardi, Ariel Luis; Martinez, Sandra Rita
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we construct an “interior penalty” discontinuous Galerkin method to approximate the minimizer of a variational problem related to the $p(x)$-Laplacian. The function $p:\Omega\to [p_1,p_2]$ is log-Hölder continuous and $1
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lombardi, Ariel Luis. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez, Sandra Rita. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Variable exponent spaces
Minimization
Discontinuous Galerkin - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19994
Ver los metadatos del registro completo
id |
CONICETDig_f735c71c71d3d5e1b767c0433bbd157b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19994 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplaciandel Pezzo, Leandro MartinLombardi, Ariel LuisMartinez, Sandra RitaVariable exponent spacesMinimizationDiscontinuous Galerkinhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we construct an “interior penalty” discontinuous Galerkin method to approximate the minimizer of a variational problem related to the $p(x)$-Laplacian. The function $p:\Omega\to [p_1,p_2]$ is log-Hölder continuous and $1<p_1\leq p_2<\infty$. We prove that the minimizers of the discrete functional converge to the solution. We also make some numerical experiments in dimension one to compare this method with the conforming Galerkin method, in the case where $p_1$ is close to one. This example is motivated by its applications to image processing.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lombardi, Ariel Luis. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez, Sandra Rita. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSiam Publications2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19994del Pezzo, Leandro Martin; Lombardi, Ariel Luis; Martinez, Sandra Rita; Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian; Siam Publications; Siam Journal On Numerical Analysis; 50; 5; 9-2012; 2497-25210036-14291095-7170CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/110820324info:eu-repo/semantics/altIdentifier/url/http://epubs.siam.org/doi/abs/10.1137/110820324info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:12Zoai:ri.conicet.gov.ar:11336/19994instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:12.461CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian |
title |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian |
spellingShingle |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian del Pezzo, Leandro Martin Variable exponent spaces Minimization Discontinuous Galerkin |
title_short |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian |
title_full |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian |
title_fullStr |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian |
title_full_unstemmed |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian |
title_sort |
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian |
dc.creator.none.fl_str_mv |
del Pezzo, Leandro Martin Lombardi, Ariel Luis Martinez, Sandra Rita |
author |
del Pezzo, Leandro Martin |
author_facet |
del Pezzo, Leandro Martin Lombardi, Ariel Luis Martinez, Sandra Rita |
author_role |
author |
author2 |
Lombardi, Ariel Luis Martinez, Sandra Rita |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Variable exponent spaces Minimization Discontinuous Galerkin |
topic |
Variable exponent spaces Minimization Discontinuous Galerkin |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we construct an “interior penalty” discontinuous Galerkin method to approximate the minimizer of a variational problem related to the $p(x)$-Laplacian. The function $p:\Omega\to [p_1,p_2]$ is log-Hölder continuous and $1<p_1\leq p_2<\infty$. We prove that the minimizers of the discrete functional converge to the solution. We also make some numerical experiments in dimension one to compare this method with the conforming Galerkin method, in the case where $p_1$ is close to one. This example is motivated by its applications to image processing. Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lombardi, Ariel Luis. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez, Sandra Rita. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we construct an “interior penalty” discontinuous Galerkin method to approximate the minimizer of a variational problem related to the $p(x)$-Laplacian. The function $p:\Omega\to [p_1,p_2]$ is log-Hölder continuous and $1<p_1\leq p_2<\infty$. We prove that the minimizers of the discrete functional converge to the solution. We also make some numerical experiments in dimension one to compare this method with the conforming Galerkin method, in the case where $p_1$ is close to one. This example is motivated by its applications to image processing. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19994 del Pezzo, Leandro Martin; Lombardi, Ariel Luis; Martinez, Sandra Rita; Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian; Siam Publications; Siam Journal On Numerical Analysis; 50; 5; 9-2012; 2497-2521 0036-1429 1095-7170 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19994 |
identifier_str_mv |
del Pezzo, Leandro Martin; Lombardi, Ariel Luis; Martinez, Sandra Rita; Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian; Siam Publications; Siam Journal On Numerical Analysis; 50; 5; 9-2012; 2497-2521 0036-1429 1095-7170 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1137/110820324 info:eu-repo/semantics/altIdentifier/url/http://epubs.siam.org/doi/abs/10.1137/110820324 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Siam Publications |
publisher.none.fl_str_mv |
Siam Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614454607609856 |
score |
13.070432 |