Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients
- Autores
- Garcia Reiriz, Alejandro Gabriel; Magallanes, Jorge Federico; Zupan, Jure; Líberman, Sara
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in blood during BNCT treatment, a method is suggested based on Kohonen neural networks. The results of a model trained with the concentration profiles from the literature are described. The prediction of the model was validated by the leave-one-out method. Its robustness shows that it is mostly independent on small variations. The ability to fit retrospective experimental data shows an uncertainty lower than the two compartment model used previously.
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; Argentina
Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia
Fil: Líberman, Sara. Comisión Nacional de Energía Atómica; Argentina - Materia
-
Kohonen neural networks
BNCT
Concentration profile prediction
p-Boronophenylalanie - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108002
Ver los metadatos del registro completo
id |
CONICETDig_b1cb0c5d6f55c5d1cd61db1aa67ebb82 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108002 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patientsGarcia Reiriz, Alejandro GabrielMagallanes, Jorge FedericoZupan, JureLíberman, SaraKohonen neural networksBNCTConcentration profile predictionp-Boronophenylalaniehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in blood during BNCT treatment, a method is suggested based on Kohonen neural networks. The results of a model trained with the concentration profiles from the literature are described. The prediction of the model was validated by the leave-one-out method. Its robustness shows that it is mostly independent on small variations. The ability to fit retrospective experimental data shows an uncertainty lower than the two compartment model used previously.Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; ArgentinaFil: Zupan, Jure. National Institute of Chemistry; EsloveniaFil: Líberman, Sara. Comisión Nacional de Energía Atómica; ArgentinaPergamon-Elsevier Science Ltd2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108002Garcia Reiriz, Alejandro Gabriel; Magallanes, Jorge Federico; Zupan, Jure; Líberman, Sara; Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients; Pergamon-Elsevier Science Ltd; Applied Radiation and Isotopes; 69; 12; 12-2011; 1793-17950969-8043CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0969804311002600info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apradiso.2011.02.055info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:37:50Zoai:ri.conicet.gov.ar:11336/108002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:37:50.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients |
title |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients |
spellingShingle |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients Garcia Reiriz, Alejandro Gabriel Kohonen neural networks BNCT Concentration profile prediction p-Boronophenylalanie |
title_short |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients |
title_full |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients |
title_fullStr |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients |
title_full_unstemmed |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients |
title_sort |
Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients |
dc.creator.none.fl_str_mv |
Garcia Reiriz, Alejandro Gabriel Magallanes, Jorge Federico Zupan, Jure Líberman, Sara |
author |
Garcia Reiriz, Alejandro Gabriel |
author_facet |
Garcia Reiriz, Alejandro Gabriel Magallanes, Jorge Federico Zupan, Jure Líberman, Sara |
author_role |
author |
author2 |
Magallanes, Jorge Federico Zupan, Jure Líberman, Sara |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Kohonen neural networks BNCT Concentration profile prediction p-Boronophenylalanie |
topic |
Kohonen neural networks BNCT Concentration profile prediction p-Boronophenylalanie |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in blood during BNCT treatment, a method is suggested based on Kohonen neural networks. The results of a model trained with the concentration profiles from the literature are described. The prediction of the model was validated by the leave-one-out method. Its robustness shows that it is mostly independent on small variations. The ability to fit retrospective experimental data shows an uncertainty lower than the two compartment model used previously. Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; Argentina Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia Fil: Líberman, Sara. Comisión Nacional de Energía Atómica; Argentina |
description |
For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in blood during BNCT treatment, a method is suggested based on Kohonen neural networks. The results of a model trained with the concentration profiles from the literature are described. The prediction of the model was validated by the leave-one-out method. Its robustness shows that it is mostly independent on small variations. The ability to fit retrospective experimental data shows an uncertainty lower than the two compartment model used previously. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108002 Garcia Reiriz, Alejandro Gabriel; Magallanes, Jorge Federico; Zupan, Jure; Líberman, Sara; Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients; Pergamon-Elsevier Science Ltd; Applied Radiation and Isotopes; 69; 12; 12-2011; 1793-1795 0969-8043 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108002 |
identifier_str_mv |
Garcia Reiriz, Alejandro Gabriel; Magallanes, Jorge Federico; Zupan, Jure; Líberman, Sara; Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients; Pergamon-Elsevier Science Ltd; Applied Radiation and Isotopes; 69; 12; 12-2011; 1793-1795 0969-8043 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0969804311002600 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apradiso.2011.02.055 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083498252697600 |
score |
13.22299 |