Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy pat...
- Autores
- Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data.
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Líberman, Sara. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia - Materia
-
ARTIFICIAL NEURAL NETWORKS
BORON NEUTRON CAPTURE THERAPY (BNCT)
KOHONEN
TUMOR IRRADIATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/133268
Ver los metadatos del registro completo
id |
CONICETDig_40331484cc24a98885ad26c28c465274 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/133268 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patientsMagallanes, Jorge FedericoGarcia Reiriz, Alejandro GabrielLíberman, SaraZupan, JureARTIFICIAL NEURAL NETWORKSBORON NEUTRON CAPTURE THERAPY (BNCT)KOHONENTUMOR IRRADIATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data.Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Líberman, Sara. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Zupan, Jure. National Institute of Chemistry; EsloveniaJohn Wiley & Sons Ltd2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133268Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure; Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients; John Wiley & Sons Ltd; Journal of Chemometrics; 25; 6; 6-2011; 340-3480886-9383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/cem.1383info:eu-repo/semantics/altIdentifier/doi/10.1002/cem.1383info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:07:21Zoai:ri.conicet.gov.ar:11336/133268instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:07:21.962CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients |
title |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients |
spellingShingle |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients Magallanes, Jorge Federico ARTIFICIAL NEURAL NETWORKS BORON NEUTRON CAPTURE THERAPY (BNCT) KOHONEN TUMOR IRRADIATION |
title_short |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients |
title_full |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients |
title_fullStr |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients |
title_full_unstemmed |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients |
title_sort |
Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients |
dc.creator.none.fl_str_mv |
Magallanes, Jorge Federico Garcia Reiriz, Alejandro Gabriel Líberman, Sara Zupan, Jure |
author |
Magallanes, Jorge Federico |
author_facet |
Magallanes, Jorge Federico Garcia Reiriz, Alejandro Gabriel Líberman, Sara Zupan, Jure |
author_role |
author |
author2 |
Garcia Reiriz, Alejandro Gabriel Líberman, Sara Zupan, Jure |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORKS BORON NEUTRON CAPTURE THERAPY (BNCT) KOHONEN TUMOR IRRADIATION |
topic |
ARTIFICIAL NEURAL NETWORKS BORON NEUTRON CAPTURE THERAPY (BNCT) KOHONEN TUMOR IRRADIATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data. Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Líberman, Sara. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia |
description |
The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/133268 Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure; Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients; John Wiley & Sons Ltd; Journal of Chemometrics; 25; 6; 6-2011; 340-348 0886-9383 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/133268 |
identifier_str_mv |
Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure; Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients; John Wiley & Sons Ltd; Journal of Chemometrics; 25; 6; 6-2011; 340-348 0886-9383 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/cem.1383 info:eu-repo/semantics/altIdentifier/doi/10.1002/cem.1383 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083218140299264 |
score |
13.22299 |