Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy pat...

Autores
Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data.
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Líberman, Sara. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia
Materia
ARTIFICIAL NEURAL NETWORKS
BORON NEUTRON CAPTURE THERAPY (BNCT)
KOHONEN
TUMOR IRRADIATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/133268

id CONICETDig_40331484cc24a98885ad26c28c465274
oai_identifier_str oai:ri.conicet.gov.ar:11336/133268
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patientsMagallanes, Jorge FedericoGarcia Reiriz, Alejandro GabrielLíberman, SaraZupan, JureARTIFICIAL NEURAL NETWORKSBORON NEUTRON CAPTURE THERAPY (BNCT)KOHONENTUMOR IRRADIATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data.Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Líberman, Sara. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Zupan, Jure. National Institute of Chemistry; EsloveniaJohn Wiley & Sons Ltd2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133268Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure; Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients; John Wiley & Sons Ltd; Journal of Chemometrics; 25; 6; 6-2011; 340-3480886-9383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/cem.1383info:eu-repo/semantics/altIdentifier/doi/10.1002/cem.1383info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:07:21Zoai:ri.conicet.gov.ar:11336/133268instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:07:21.962CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
title Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
spellingShingle Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
Magallanes, Jorge Federico
ARTIFICIAL NEURAL NETWORKS
BORON NEUTRON CAPTURE THERAPY (BNCT)
KOHONEN
TUMOR IRRADIATION
title_short Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
title_full Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
title_fullStr Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
title_full_unstemmed Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
title_sort Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients
dc.creator.none.fl_str_mv Magallanes, Jorge Federico
Garcia Reiriz, Alejandro Gabriel
Líberman, Sara
Zupan, Jure
author Magallanes, Jorge Federico
author_facet Magallanes, Jorge Federico
Garcia Reiriz, Alejandro Gabriel
Líberman, Sara
Zupan, Jure
author_role author
author2 Garcia Reiriz, Alejandro Gabriel
Líberman, Sara
Zupan, Jure
author2_role author
author
author
dc.subject.none.fl_str_mv ARTIFICIAL NEURAL NETWORKS
BORON NEUTRON CAPTURE THERAPY (BNCT)
KOHONEN
TUMOR IRRADIATION
topic ARTIFICIAL NEURAL NETWORKS
BORON NEUTRON CAPTURE THERAPY (BNCT)
KOHONEN
TUMOR IRRADIATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data.
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Líberman, Sara. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia
description The irradiation dose in tumor and healthy tissue of a boron neutron capture therapy (BNCT) patient depends on the boron concentration in blood. In most treatments, this concentration is experimentally determined before and after irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural network method is suggested. The results of various (20×20×40 Kohonen network) models based on different trainings on the data set of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a maximum of 3.30μgg-1 for the present cases. In order to show the abilities and limitations of the method, the best and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an increasing number of data.
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/133268
Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure; Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients; John Wiley & Sons Ltd; Journal of Chemometrics; 25; 6; 6-2011; 340-348
0886-9383
CONICET Digital
CONICET
url http://hdl.handle.net/11336/133268
identifier_str_mv Magallanes, Jorge Federico; Garcia Reiriz, Alejandro Gabriel; Líberman, Sara; Zupan, Jure; Kohonen classification applying 'missing variables' criterion to evaluate the p-boronophenylalanine human-body-concentration decreasing profile of boron neutron capture therapy patients; John Wiley & Sons Ltd; Journal of Chemometrics; 25; 6; 6-2011; 340-348
0886-9383
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/cem.1383
info:eu-repo/semantics/altIdentifier/doi/10.1002/cem.1383
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083218140299264
score 13.22299