Proper integration of feature subsets boosts GO subcellular localization predictions
- Autores
- Spetale, Flavio Ezequiel; Tapia Paredes, Elizabeth; Murillo, Javier; Krsticevic, Flavia Jorgelina; Ponce, Sergio; Angelone, Laura Monica; Bulacio, Pilar Estela
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- La predicción de múltiples localizaciones subcelulares en proteínas brinda información relavante para el descubrimiento de funciones biológicas. El uso de métodos computacionales basados en el conocimiento puede ser un buen punto de partida para conducir a las costosas validaciones experimentales. En este trabajo, presentamos un framework de clasificación multi-etiqueta para para realizar la predicción en Gene Ontology - Componente Celular enfocada en la mejora de dos aspectos del diseño: i) la caracterización de la secuencia proteica, relacionando el conocimiento biológico con la evidencia experimental; y ii) la evaluación de errores al considerar un modelo de ruido inherente a los frameworks de predicción reales. Nuestra propuesta es validada contra un conjunto de secuencias de proteínas de cuatro organismos modelos D. rerio, A. thaliana, S. cerevisiae and D. melanogaster.
Prediction of multiple subcellular localizations in proteins brings relevant information for biologicalfunction discovery. The use of computational methods based on knowledge can be a helpful starting point forguiding the costly experimental validation. In this work, we present a multilabel classifier framework to performGene Ontology - Cellular Component prediction focused on the improvement of two design aspects: i) the proteinsequence characterization, regarding biological knowledge with experimental evidence, and ii) the error evaluation byconsidering a noise model inherent in real prediction frameworks. Our proposal is validated against sets of well-knownprotein sequences of four model organisms D. rerio, A. thaliana, S. cerevisiae and D. melanogaster
Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Tapia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Murillo, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Krsticevic Flavia. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Ponce Sergio. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina
Fil: Angelone, Laura Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Bulacio, Pilar Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina - Materia
-
Cellular Component
Prediction
Multilabel Classification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95801
Ver los metadatos del registro completo
| id |
CONICETDig_b0b5cee2483a84bfced95900536821d9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95801 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Proper integration of feature subsets boosts GO subcellular localization predictionsSpetale, Flavio EzequielTapia Paredes, ElizabethMurillo, JavierKrsticevic, Flavia JorgelinaPonce, SergioAngelone, Laura MonicaBulacio, Pilar EstelaCellular ComponentPredictionMultilabel Classificationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1La predicción de múltiples localizaciones subcelulares en proteínas brinda información relavante para el descubrimiento de funciones biológicas. El uso de métodos computacionales basados en el conocimiento puede ser un buen punto de partida para conducir a las costosas validaciones experimentales. En este trabajo, presentamos un framework de clasificación multi-etiqueta para para realizar la predicción en Gene Ontology - Componente Celular enfocada en la mejora de dos aspectos del diseño: i) la caracterización de la secuencia proteica, relacionando el conocimiento biológico con la evidencia experimental; y ii) la evaluación de errores al considerar un modelo de ruido inherente a los frameworks de predicción reales. Nuestra propuesta es validada contra un conjunto de secuencias de proteínas de cuatro organismos modelos D. rerio, A. thaliana, S. cerevisiae and D. melanogaster.Prediction of multiple subcellular localizations in proteins brings relevant information for biologicalfunction discovery. The use of computational methods based on knowledge can be a helpful starting point forguiding the costly experimental validation. In this work, we present a multilabel classifier framework to performGene Ontology - Cellular Component prediction focused on the improvement of two design aspects: i) the proteinsequence characterization, regarding biological knowledge with experimental evidence, and ii) the error evaluation byconsidering a noise model inherent in real prediction frameworks. Our proposal is validated against sets of well-knownprotein sequences of four model organisms D. rerio, A. thaliana, S. cerevisiae and D. melanogasterFil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Tapia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Murillo, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Krsticevic Flavia. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Ponce Sergio. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; ArgentinaFil: Angelone, Laura Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Bulacio, Pilar Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; ArgentinaSociedad Argentina de Bioingeniería2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95801Spetale, Flavio Ezequiel; Tapia Paredes, Elizabeth; Murillo, Javier; Krsticevic, Flavia Jorgelina; Ponce, Sergio; et al.; Proper integration of feature subsets boosts GO subcellular localization predictions; Sociedad Argentina de Bioingeniería; Revista Argentina de Bioingeniería; 22; 1; 3-2018; 3-60329-5257CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://revistasabi.fi.mdp.edu.ar/index.php/revista/article/view/91info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T13:18:06Zoai:ri.conicet.gov.ar:11336/95801instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 13:18:06.827CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Proper integration of feature subsets boosts GO subcellular localization predictions |
| title |
Proper integration of feature subsets boosts GO subcellular localization predictions |
| spellingShingle |
Proper integration of feature subsets boosts GO subcellular localization predictions Spetale, Flavio Ezequiel Cellular Component Prediction Multilabel Classification |
| title_short |
Proper integration of feature subsets boosts GO subcellular localization predictions |
| title_full |
Proper integration of feature subsets boosts GO subcellular localization predictions |
| title_fullStr |
Proper integration of feature subsets boosts GO subcellular localization predictions |
| title_full_unstemmed |
Proper integration of feature subsets boosts GO subcellular localization predictions |
| title_sort |
Proper integration of feature subsets boosts GO subcellular localization predictions |
| dc.creator.none.fl_str_mv |
Spetale, Flavio Ezequiel Tapia Paredes, Elizabeth Murillo, Javier Krsticevic, Flavia Jorgelina Ponce, Sergio Angelone, Laura Monica Bulacio, Pilar Estela |
| author |
Spetale, Flavio Ezequiel |
| author_facet |
Spetale, Flavio Ezequiel Tapia Paredes, Elizabeth Murillo, Javier Krsticevic, Flavia Jorgelina Ponce, Sergio Angelone, Laura Monica Bulacio, Pilar Estela |
| author_role |
author |
| author2 |
Tapia Paredes, Elizabeth Murillo, Javier Krsticevic, Flavia Jorgelina Ponce, Sergio Angelone, Laura Monica Bulacio, Pilar Estela |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
Cellular Component Prediction Multilabel Classification |
| topic |
Cellular Component Prediction Multilabel Classification |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
La predicción de múltiples localizaciones subcelulares en proteínas brinda información relavante para el descubrimiento de funciones biológicas. El uso de métodos computacionales basados en el conocimiento puede ser un buen punto de partida para conducir a las costosas validaciones experimentales. En este trabajo, presentamos un framework de clasificación multi-etiqueta para para realizar la predicción en Gene Ontology - Componente Celular enfocada en la mejora de dos aspectos del diseño: i) la caracterización de la secuencia proteica, relacionando el conocimiento biológico con la evidencia experimental; y ii) la evaluación de errores al considerar un modelo de ruido inherente a los frameworks de predicción reales. Nuestra propuesta es validada contra un conjunto de secuencias de proteínas de cuatro organismos modelos D. rerio, A. thaliana, S. cerevisiae and D. melanogaster. Prediction of multiple subcellular localizations in proteins brings relevant information for biologicalfunction discovery. The use of computational methods based on knowledge can be a helpful starting point forguiding the costly experimental validation. In this work, we present a multilabel classifier framework to performGene Ontology - Cellular Component prediction focused on the improvement of two design aspects: i) the proteinsequence characterization, regarding biological knowledge with experimental evidence, and ii) the error evaluation byconsidering a noise model inherent in real prediction frameworks. Our proposal is validated against sets of well-knownprotein sequences of four model organisms D. rerio, A. thaliana, S. cerevisiae and D. melanogaster Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Tapia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Murillo, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Krsticevic Flavia. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Ponce Sergio. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina Fil: Angelone, Laura Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Bulacio, Pilar Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina |
| description |
La predicción de múltiples localizaciones subcelulares en proteínas brinda información relavante para el descubrimiento de funciones biológicas. El uso de métodos computacionales basados en el conocimiento puede ser un buen punto de partida para conducir a las costosas validaciones experimentales. En este trabajo, presentamos un framework de clasificación multi-etiqueta para para realizar la predicción en Gene Ontology - Componente Celular enfocada en la mejora de dos aspectos del diseño: i) la caracterización de la secuencia proteica, relacionando el conocimiento biológico con la evidencia experimental; y ii) la evaluación de errores al considerar un modelo de ruido inherente a los frameworks de predicción reales. Nuestra propuesta es validada contra un conjunto de secuencias de proteínas de cuatro organismos modelos D. rerio, A. thaliana, S. cerevisiae and D. melanogaster. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95801 Spetale, Flavio Ezequiel; Tapia Paredes, Elizabeth; Murillo, Javier; Krsticevic, Flavia Jorgelina; Ponce, Sergio; et al.; Proper integration of feature subsets boosts GO subcellular localization predictions; Sociedad Argentina de Bioingeniería; Revista Argentina de Bioingeniería; 22; 1; 3-2018; 3-6 0329-5257 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/95801 |
| identifier_str_mv |
Spetale, Flavio Ezequiel; Tapia Paredes, Elizabeth; Murillo, Javier; Krsticevic, Flavia Jorgelina; Ponce, Sergio; et al.; Proper integration of feature subsets boosts GO subcellular localization predictions; Sociedad Argentina de Bioingeniería; Revista Argentina de Bioingeniería; 22; 1; 3-2018; 3-6 0329-5257 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://revistasabi.fi.mdp.edu.ar/index.php/revista/article/view/91 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Sociedad Argentina de Bioingeniería |
| publisher.none.fl_str_mv |
Sociedad Argentina de Bioingeniería |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856403466671357952 |
| score |
13.115731 |