Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance
- Autores
- Cascallar, Eduardo; Musso, Mariel Fernanda
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This research describes the application of a neural networks approach in the prediction of readiness for reading upon entry to primary education. Machine-learning techniques used offer an iterative methodology that is capable of discovering complex relationships and interactions in the inputs and outcomes. The approach maximized classification accuracy, and was able to model various outcome patterns from the over 700 students studied. Results based on hypotheses of student characteristics using these predictive modeling achieved a total accuracy of 98% in the identification of "students-below-readiness-threshold". The presentation explains the processes and the stream analysis technique utilized, and explores various alternative models.
Fil: Cascallar, Eduardo. Katholikie Universiteit Leuven; Bélgica
Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina
XXIX International Congress of Psychology
Berlín
Alemania
International Union of Psychological Science - Materia
-
Prediction
Reading
Performance
Classification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/238563
Ver los metadatos del registro completo
id |
CONICETDig_559fcb0b90303df17afa4a522c76d066 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/238563 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performanceCascallar, EduardoMusso, Mariel FernandaPredictionReadingPerformanceClassificationhttps://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5This research describes the application of a neural networks approach in the prediction of readiness for reading upon entry to primary education. Machine-learning techniques used offer an iterative methodology that is capable of discovering complex relationships and interactions in the inputs and outcomes. The approach maximized classification accuracy, and was able to model various outcome patterns from the over 700 students studied. Results based on hypotheses of student characteristics using these predictive modeling achieved a total accuracy of 98% in the identification of "students-below-readiness-threshold". The presentation explains the processes and the stream analysis technique utilized, and explores various alternative models.Fil: Cascallar, Eduardo. Katholikie Universiteit Leuven; BélgicaFil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; ArgentinaXXIX International Congress of PsychologyBerlínAlemaniaInternational Union of Psychological ScienceWiley2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238563Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance; XXIX International Congress of Psychology; Berlín; Alemania; 2008; 242-2420020-75941464-066XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/epdf/10.1080/00207594.2008.10108484info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/toc/1464066x/2008/43/3-4Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:00Zoai:ri.conicet.gov.ar:11336/238563instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:00.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance |
title |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance |
spellingShingle |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance Cascallar, Eduardo Prediction Reading Performance Classification |
title_short |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance |
title_full |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance |
title_fullStr |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance |
title_full_unstemmed |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance |
title_sort |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance |
dc.creator.none.fl_str_mv |
Cascallar, Eduardo Musso, Mariel Fernanda |
author |
Cascallar, Eduardo |
author_facet |
Cascallar, Eduardo Musso, Mariel Fernanda |
author_role |
author |
author2 |
Musso, Mariel Fernanda |
author2_role |
author |
dc.subject.none.fl_str_mv |
Prediction Reading Performance Classification |
topic |
Prediction Reading Performance Classification |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.1 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This research describes the application of a neural networks approach in the prediction of readiness for reading upon entry to primary education. Machine-learning techniques used offer an iterative methodology that is capable of discovering complex relationships and interactions in the inputs and outcomes. The approach maximized classification accuracy, and was able to model various outcome patterns from the over 700 students studied. Results based on hypotheses of student characteristics using these predictive modeling achieved a total accuracy of 98% in the identification of "students-below-readiness-threshold". The presentation explains the processes and the stream analysis technique utilized, and explores various alternative models. Fil: Cascallar, Eduardo. Katholikie Universiteit Leuven; Bélgica Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina XXIX International Congress of Psychology Berlín Alemania International Union of Psychological Science |
description |
This research describes the application of a neural networks approach in the prediction of readiness for reading upon entry to primary education. Machine-learning techniques used offer an iterative methodology that is capable of discovering complex relationships and interactions in the inputs and outcomes. The approach maximized classification accuracy, and was able to model various outcome patterns from the over 700 students studied. Results based on hypotheses of student characteristics using these predictive modeling achieved a total accuracy of 98% in the identification of "students-below-readiness-threshold". The presentation explains the processes and the stream analysis technique utilized, and explores various alternative models. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/238563 Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance; XXIX International Congress of Psychology; Berlín; Alemania; 2008; 242-242 0020-7594 1464-066X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/238563 |
identifier_str_mv |
Classificatory stream analysis in the prediction of expected reading readiness: understanding student performance; XXIX International Congress of Psychology; Berlín; Alemania; 2008; 242-242 0020-7594 1464-066X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/epdf/10.1080/00207594.2008.10108484 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/toc/1464066x/2008/43/3-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614119224770560 |
score |
13.070432 |