Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement

Autores
Nuñez, Jesus Dario; Massone, Octavio Antonio; García, José A.
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
En este trabajo se describe un conjunto de algoritmos escritos en el lenguaje de programación Python, orientados a la detección y el seguimiento autónomo de objetos en vídeos experimentales. Esta rutina se desarrolló bajo los fundamentos de la sustracción de fondo y umbral de imagen (empleando la biblioteca OpenCV), lo cual posibilita seguir un espectro amplio de animales bajo diferentes condiciones. La rutina fue validada usándola en crustáceos acuáticos y semi-terrestres, y bajo diferentes escenarios experimentales (muestreo de laboratorio, de campo y utilizando vídeos creados en condiciones nocturnas y diurnas). Una de las ventajas de la rutina que presentamos es que fue construida empleando un software de código abierto y multiplataforma, por lo que se la puede emplear en cualquier sistema operativo. La naturaleza de código abierto de esta rutina permite flexibilidad y escalabilidad, y fácil personalización. Por lo tanto, es transferible a otras especies o experimentos en el contexto de la ecología del comportamiento. La presente rutina constituye una alternativa gratuita a los sistemas comerciales de seguimiento de vídeo y, en consecuencia, se la puede aplicar a una gran variedad de programas, tanto educativos como de investigación.
Here, we present a set of algorithms using the Python programming language, that will allow using a routine for object detection and tracking in experimental videos. We developed a script, under the fundamentals of background subtraction and image thresholding (using the OpenCV package), that makes it possible to track a wide spectrum of animals under different conditions. We have validated this script through testing on semi-terrestrial and aquatic crustacean species and under different experimental scenarios (laboratory and field sampling and using video created under nocturnal and diurnal conditions). The open-source nature of the script allows for flexibility and scalability, so it can be easily customized and is thus transferable to other species/experiments in the context of behavioral ecology. The tracking script is easy customizable and free alternative to commercial video tracking systems and therefore, applicable to a wide variety of both educational and research programs.
Fil: Nuñez, Jesus Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Massone, Octavio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: García, José A.. Universitat Oberta de Catalunya; España
Materia
DETECCIÓN DE OBJETOS
ECOLOGÍA DEL COMPORTAMIENTO
SEGUIMIENTO POR VIDEO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216180

id CONICETDig_b02e388352d2bf6c5360b61d187b533f
oai_identifier_str oai:ri.conicet.gov.ar:11336/216180
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automated tracking of aquatic crustaceans with potential application on the quantification of animals movementSeguimiento automatizado de diferentes crustáceos acuáticos con potencial aplicación a la cuantificación de movimiento de animalesNuñez, Jesus DarioMassone, Octavio AntonioGarcía, José A.DETECCIÓN DE OBJETOSECOLOGÍA DEL COMPORTAMIENTOSEGUIMIENTO POR VIDEOhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1En este trabajo se describe un conjunto de algoritmos escritos en el lenguaje de programación Python, orientados a la detección y el seguimiento autónomo de objetos en vídeos experimentales. Esta rutina se desarrolló bajo los fundamentos de la sustracción de fondo y umbral de imagen (empleando la biblioteca OpenCV), lo cual posibilita seguir un espectro amplio de animales bajo diferentes condiciones. La rutina fue validada usándola en crustáceos acuáticos y semi-terrestres, y bajo diferentes escenarios experimentales (muestreo de laboratorio, de campo y utilizando vídeos creados en condiciones nocturnas y diurnas). Una de las ventajas de la rutina que presentamos es que fue construida empleando un software de código abierto y multiplataforma, por lo que se la puede emplear en cualquier sistema operativo. La naturaleza de código abierto de esta rutina permite flexibilidad y escalabilidad, y fácil personalización. Por lo tanto, es transferible a otras especies o experimentos en el contexto de la ecología del comportamiento. La presente rutina constituye una alternativa gratuita a los sistemas comerciales de seguimiento de vídeo y, en consecuencia, se la puede aplicar a una gran variedad de programas, tanto educativos como de investigación.Here, we present a set of algorithms using the Python programming language, that will allow using a routine for object detection and tracking in experimental videos. We developed a script, under the fundamentals of background subtraction and image thresholding (using the OpenCV package), that makes it possible to track a wide spectrum of animals under different conditions. We have validated this script through testing on semi-terrestrial and aquatic crustacean species and under different experimental scenarios (laboratory and field sampling and using video created under nocturnal and diurnal conditions). The open-source nature of the script allows for flexibility and scalability, so it can be easily customized and is thus transferable to other species/experiments in the context of behavioral ecology. The tracking script is easy customizable and free alternative to commercial video tracking systems and therefore, applicable to a wide variety of both educational and research programs.Fil: Nuñez, Jesus Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Massone, Octavio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: García, José A.. Universitat Oberta de Catalunya; EspañaAsociación Argentina de Ecología2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216180Nuñez, Jesus Dario; Massone, Octavio Antonio; García, José A.; Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement; Asociación Argentina de Ecología; Ecología Austral; 33; 1; 12-2022; 53-590327-5477CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1920info:eu-repo/semantics/altIdentifier/doi/10.25260/EA.23.33.1.0.1920info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:05Zoai:ri.conicet.gov.ar:11336/216180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:05.756CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement
Seguimiento automatizado de diferentes crustáceos acuáticos con potencial aplicación a la cuantificación de movimiento de animales
title Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement
spellingShingle Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement
Nuñez, Jesus Dario
DETECCIÓN DE OBJETOS
ECOLOGÍA DEL COMPORTAMIENTO
SEGUIMIENTO POR VIDEO
title_short Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement
title_full Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement
title_fullStr Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement
title_full_unstemmed Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement
title_sort Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement
dc.creator.none.fl_str_mv Nuñez, Jesus Dario
Massone, Octavio Antonio
García, José A.
author Nuñez, Jesus Dario
author_facet Nuñez, Jesus Dario
Massone, Octavio Antonio
García, José A.
author_role author
author2 Massone, Octavio Antonio
García, José A.
author2_role author
author
dc.subject.none.fl_str_mv DETECCIÓN DE OBJETOS
ECOLOGÍA DEL COMPORTAMIENTO
SEGUIMIENTO POR VIDEO
topic DETECCIÓN DE OBJETOS
ECOLOGÍA DEL COMPORTAMIENTO
SEGUIMIENTO POR VIDEO
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv En este trabajo se describe un conjunto de algoritmos escritos en el lenguaje de programación Python, orientados a la detección y el seguimiento autónomo de objetos en vídeos experimentales. Esta rutina se desarrolló bajo los fundamentos de la sustracción de fondo y umbral de imagen (empleando la biblioteca OpenCV), lo cual posibilita seguir un espectro amplio de animales bajo diferentes condiciones. La rutina fue validada usándola en crustáceos acuáticos y semi-terrestres, y bajo diferentes escenarios experimentales (muestreo de laboratorio, de campo y utilizando vídeos creados en condiciones nocturnas y diurnas). Una de las ventajas de la rutina que presentamos es que fue construida empleando un software de código abierto y multiplataforma, por lo que se la puede emplear en cualquier sistema operativo. La naturaleza de código abierto de esta rutina permite flexibilidad y escalabilidad, y fácil personalización. Por lo tanto, es transferible a otras especies o experimentos en el contexto de la ecología del comportamiento. La presente rutina constituye una alternativa gratuita a los sistemas comerciales de seguimiento de vídeo y, en consecuencia, se la puede aplicar a una gran variedad de programas, tanto educativos como de investigación.
Here, we present a set of algorithms using the Python programming language, that will allow using a routine for object detection and tracking in experimental videos. We developed a script, under the fundamentals of background subtraction and image thresholding (using the OpenCV package), that makes it possible to track a wide spectrum of animals under different conditions. We have validated this script through testing on semi-terrestrial and aquatic crustacean species and under different experimental scenarios (laboratory and field sampling and using video created under nocturnal and diurnal conditions). The open-source nature of the script allows for flexibility and scalability, so it can be easily customized and is thus transferable to other species/experiments in the context of behavioral ecology. The tracking script is easy customizable and free alternative to commercial video tracking systems and therefore, applicable to a wide variety of both educational and research programs.
Fil: Nuñez, Jesus Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Massone, Octavio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: García, José A.. Universitat Oberta de Catalunya; España
description En este trabajo se describe un conjunto de algoritmos escritos en el lenguaje de programación Python, orientados a la detección y el seguimiento autónomo de objetos en vídeos experimentales. Esta rutina se desarrolló bajo los fundamentos de la sustracción de fondo y umbral de imagen (empleando la biblioteca OpenCV), lo cual posibilita seguir un espectro amplio de animales bajo diferentes condiciones. La rutina fue validada usándola en crustáceos acuáticos y semi-terrestres, y bajo diferentes escenarios experimentales (muestreo de laboratorio, de campo y utilizando vídeos creados en condiciones nocturnas y diurnas). Una de las ventajas de la rutina que presentamos es que fue construida empleando un software de código abierto y multiplataforma, por lo que se la puede emplear en cualquier sistema operativo. La naturaleza de código abierto de esta rutina permite flexibilidad y escalabilidad, y fácil personalización. Por lo tanto, es transferible a otras especies o experimentos en el contexto de la ecología del comportamiento. La presente rutina constituye una alternativa gratuita a los sistemas comerciales de seguimiento de vídeo y, en consecuencia, se la puede aplicar a una gran variedad de programas, tanto educativos como de investigación.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216180
Nuñez, Jesus Dario; Massone, Octavio Antonio; García, José A.; Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement; Asociación Argentina de Ecología; Ecología Austral; 33; 1; 12-2022; 53-59
0327-5477
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216180
identifier_str_mv Nuñez, Jesus Dario; Massone, Octavio Antonio; García, José A.; Automated tracking of aquatic crustaceans with potential application on the quantification of animals movement; Asociación Argentina de Ecología; Ecología Austral; 33; 1; 12-2022; 53-59
0327-5477
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1920
info:eu-repo/semantics/altIdentifier/doi/10.25260/EA.23.33.1.0.1920
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Ecología
publisher.none.fl_str_mv Asociación Argentina de Ecología
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614415129772032
score 13.070432