A Stefan problem for a non-classical heat equation with a convective condition
- Autores
- Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
Stefan problem
Non-classical heat equation
Convective condition
Free boun dary problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/278505
Ver los metadatos del registro completo
| id |
CONICETDig_77d4b2dfe9d2ba75714573a775554e86 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/278505 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A Stefan problem for a non-classical heat equation with a convective conditionBriozzo, Adriana ClotildeTarzia, Domingo AlbertoStefan problemNon-classical heat equationConvective conditionFree boun dary problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaElsevier Science Inc.2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278505Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A Stefan problem for a non-classical heat equation with a convective condition; Elsevier Science Inc.; Applied Mathematics and Computation; 217; 8; 12-2010; 4051-40600096-3003CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0096300310010453info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2010.10.015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T11:45:28Zoai:ri.conicet.gov.ar:11336/278505instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 11:45:28.604CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A Stefan problem for a non-classical heat equation with a convective condition |
| title |
A Stefan problem for a non-classical heat equation with a convective condition |
| spellingShingle |
A Stefan problem for a non-classical heat equation with a convective condition Briozzo, Adriana Clotilde Stefan problem Non-classical heat equation Convective condition Free boun dary problems |
| title_short |
A Stefan problem for a non-classical heat equation with a convective condition |
| title_full |
A Stefan problem for a non-classical heat equation with a convective condition |
| title_fullStr |
A Stefan problem for a non-classical heat equation with a convective condition |
| title_full_unstemmed |
A Stefan problem for a non-classical heat equation with a convective condition |
| title_sort |
A Stefan problem for a non-classical heat equation with a convective condition |
| dc.creator.none.fl_str_mv |
Briozzo, Adriana Clotilde Tarzia, Domingo Alberto |
| author |
Briozzo, Adriana Clotilde |
| author_facet |
Briozzo, Adriana Clotilde Tarzia, Domingo Alberto |
| author_role |
author |
| author2 |
Tarzia, Domingo Alberto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Stefan problem Non-classical heat equation Convective condition Free boun dary problems |
| topic |
Stefan problem Non-classical heat equation Convective condition Free boun dary problems |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term. Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
| description |
We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/278505 Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A Stefan problem for a non-classical heat equation with a convective condition; Elsevier Science Inc.; Applied Mathematics and Computation; 217; 8; 12-2010; 4051-4060 0096-3003 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/278505 |
| identifier_str_mv |
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A Stefan problem for a non-classical heat equation with a convective condition; Elsevier Science Inc.; Applied Mathematics and Computation; 217; 8; 12-2010; 4051-4060 0096-3003 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0096300310010453 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2010.10.015 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
| publisher.none.fl_str_mv |
Elsevier Science Inc. |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1854320855719346176 |
| score |
13.113929 |