A Stefan problem for a non-classical heat equation with a convective condition

Autores
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Materia
Stefan problem
Non-classical heat equation
Convective condition
Free boun dary problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/278505

id CONICETDig_77d4b2dfe9d2ba75714573a775554e86
oai_identifier_str oai:ri.conicet.gov.ar:11336/278505
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Stefan problem for a non-classical heat equation with a convective conditionBriozzo, Adriana ClotildeTarzia, Domingo AlbertoStefan problemNon-classical heat equationConvective conditionFree boun dary problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaElsevier Science Inc.2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278505Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A Stefan problem for a non-classical heat equation with a convective condition; Elsevier Science Inc.; Applied Mathematics and Computation; 217; 8; 12-2010; 4051-40600096-3003CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0096300310010453info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2010.10.015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T11:45:28Zoai:ri.conicet.gov.ar:11336/278505instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 11:45:28.604CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Stefan problem for a non-classical heat equation with a convective condition
title A Stefan problem for a non-classical heat equation with a convective condition
spellingShingle A Stefan problem for a non-classical heat equation with a convective condition
Briozzo, Adriana Clotilde
Stefan problem
Non-classical heat equation
Convective condition
Free boun dary problems
title_short A Stefan problem for a non-classical heat equation with a convective condition
title_full A Stefan problem for a non-classical heat equation with a convective condition
title_fullStr A Stefan problem for a non-classical heat equation with a convective condition
title_full_unstemmed A Stefan problem for a non-classical heat equation with a convective condition
title_sort A Stefan problem for a non-classical heat equation with a convective condition
dc.creator.none.fl_str_mv Briozzo, Adriana Clotilde
Tarzia, Domingo Alberto
author Briozzo, Adriana Clotilde
author_facet Briozzo, Adriana Clotilde
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv Stefan problem
Non-classical heat equation
Convective condition
Free boun dary problems
topic Stefan problem
Non-classical heat equation
Convective condition
Free boun dary problems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
description We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/278505
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A Stefan problem for a non-classical heat equation with a convective condition; Elsevier Science Inc.; Applied Mathematics and Computation; 217; 8; 12-2010; 4051-4060
0096-3003
CONICET Digital
CONICET
url http://hdl.handle.net/11336/278505
identifier_str_mv Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A Stefan problem for a non-classical heat equation with a convective condition; Elsevier Science Inc.; Applied Mathematics and Computation; 217; 8; 12-2010; 4051-4060
0096-3003
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0096300310010453
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2010.10.015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc.
publisher.none.fl_str_mv Elsevier Science Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1854320855719346176
score 13.113929