Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae)
- Autores
- Mazzetta, G. V.; Blanco, R. E.; Cisilino, Adrian Pablo
- Año de publicación
- 2004
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Se estudió cuantitativamente y por vez primera el diseño biomecánico del diente de un dinosaurio. Para ello se generó mediante tomografía computarizada una serie de imágenes transaxiales (separadas a intervalos de 1,5 mm) de una corona dentaria aislada referida al terópodo carnívoro Giganotosaurus (MUCPv-52). Esta técnica no invasiva permite la reconstrucción tridimensional de la geometría de la estructura biológica considerada por lo cual constituye una base adecuada para su modelización con elementos finitos (MEF). La MEF constituye un enfoque matemático que ofrece una precisión sin paralelo para el análisis del campo de tensiones en estructuras tales como los dientes, los cuales in vivo están sujetos a regímenes variables de tensión y deformación. La corona dentaria referida a Giganotosaurus fue discretizada mediante una malla tridimensional de elementos tetraédricos de cuatro nodos. Las condiciones de carga fijadas sobre la corona permitieron simular una mordida estática aplicada verticalmente sobre una presa inmóvil y sobre una presa que ejerce una tracción perpendicular al eje longitudinal del diente. Durante la mordida, las mayores tensiones principales se producen sobre el tercio medio de las superficies anterolabial (las extensivas) y posterolingual (las compresivas) de la corona. Cuando se considera además la carga inducida por la tracción de una hipotética presa, la distribución de las tensiones cambia de manera predecible, observándose las mayores magnitudes extensivas a nivel de la cara posterior de la corona. En tal situación el diente es capaz de resistir tracciones de hasta 10 kN.
A quantitative study of the biomechanical design of a dinosaur tooth was carried out for the first time. In doing so, an isolated tooth crown referred to the carnivorous theropod Giganotosaurus (MUCPv-52) was subjected to computerised tomography to obtain a series of transaxial scan images separated by 1.5mm intervals. This non-invasive technique allows the three-dimensional reconstruction of the geometry corresponding to the biological structure considered, which provides an appropriate basis for finite element modelling (FEM). Mathematical approaches as FEM offer unparalleled precision in assessment of the stress environment in such structures as teeth, which in vivo are subjected to varying regimes of stress and strain. The model of the tooth crown referred to Giganotosaurus was meshed creating four-noded tetrahedral elements. The loading conditions settled on the crown allow to simulate a static bite vertically applied on a still prey, and on a prey exerting a pull perpendicular to the long axis of the tooth. The highest principal stresses during the bite were produced at the middle one-third of the anterolabial (tensile ones), and posterolingual (compressive ones) surfaces of the tooth crown. When the load exerted by the pull of an hypothetical prey was also considered, the stress distribution change in a predictable way, with the highest tensile magnitudes at the posterior side of the crown. In such situation, the tooth is capable to withstand pulls up to 10 kN.
Fil: Mazzetta, G. V.. Universidad de la República; Uruguay
Fil: Blanco, R. E.. Universidad de la República; Uruguay
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
Teeth
Bite force
Mechanical strength
Finite element analysis
CT scanning
Giganotosaurus
Theropoda
Patagonia
Dientes
Fuerza de mordida
Resistencia mecánica
Elementos finitos
Tomografía computarizada
Giganotosaurus
Terópodos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98974
Ver los metadatos del registro completo
id |
CONICETDig_af7e00046c0321a2388cd00e87b45e77 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98974 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae)Finite element modelling of a tooth refrerred to the genus giganotosaurus coria and salgado, 1995 (Theropoda: Carcharodontosauridae)Mazzetta, G. V.Blanco, R. E.Cisilino, Adrian PabloTeethBite forceMechanical strengthFinite element analysisCT scanningGiganotosaurusTheropodaPatagoniaDientesFuerza de mordidaResistencia mecánicaElementos finitosTomografía computarizadaGiganotosaurusTerópodoshttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Se estudió cuantitativamente y por vez primera el diseño biomecánico del diente de un dinosaurio. Para ello se generó mediante tomografía computarizada una serie de imágenes transaxiales (separadas a intervalos de 1,5 mm) de una corona dentaria aislada referida al terópodo carnívoro Giganotosaurus (MUCPv-52). Esta técnica no invasiva permite la reconstrucción tridimensional de la geometría de la estructura biológica considerada por lo cual constituye una base adecuada para su modelización con elementos finitos (MEF). La MEF constituye un enfoque matemático que ofrece una precisión sin paralelo para el análisis del campo de tensiones en estructuras tales como los dientes, los cuales in vivo están sujetos a regímenes variables de tensión y deformación. La corona dentaria referida a Giganotosaurus fue discretizada mediante una malla tridimensional de elementos tetraédricos de cuatro nodos. Las condiciones de carga fijadas sobre la corona permitieron simular una mordida estática aplicada verticalmente sobre una presa inmóvil y sobre una presa que ejerce una tracción perpendicular al eje longitudinal del diente. Durante la mordida, las mayores tensiones principales se producen sobre el tercio medio de las superficies anterolabial (las extensivas) y posterolingual (las compresivas) de la corona. Cuando se considera además la carga inducida por la tracción de una hipotética presa, la distribución de las tensiones cambia de manera predecible, observándose las mayores magnitudes extensivas a nivel de la cara posterior de la corona. En tal situación el diente es capaz de resistir tracciones de hasta 10 kN.A quantitative study of the biomechanical design of a dinosaur tooth was carried out for the first time. In doing so, an isolated tooth crown referred to the carnivorous theropod Giganotosaurus (MUCPv-52) was subjected to computerised tomography to obtain a series of transaxial scan images separated by 1.5mm intervals. This non-invasive technique allows the three-dimensional reconstruction of the geometry corresponding to the biological structure considered, which provides an appropriate basis for finite element modelling (FEM). Mathematical approaches as FEM offer unparalleled precision in assessment of the stress environment in such structures as teeth, which in vivo are subjected to varying regimes of stress and strain. The model of the tooth crown referred to Giganotosaurus was meshed creating four-noded tetrahedral elements. The loading conditions settled on the crown allow to simulate a static bite vertically applied on a still prey, and on a prey exerting a pull perpendicular to the long axis of the tooth. The highest principal stresses during the bite were produced at the middle one-third of the anterolabial (tensile ones), and posterolingual (compressive ones) surfaces of the tooth crown. When the load exerted by the pull of an hypothetical prey was also considered, the stress distribution change in a predictable way, with the highest tensile magnitudes at the posterior side of the crown. In such situation, the tooth is capable to withstand pulls up to 10 kN.Fil: Mazzetta, G. V.. Universidad de la República; UruguayFil: Blanco, R. E.. Universidad de la República; UruguayFil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaAsociación Paleontológica Argentina2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98974Mazzetta, G. V.; Blanco, R. E.; Cisilino, Adrian Pablo; Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae); Asociación Paleontológica Argentina; Ameghiniana; 41; 4; 12-2004; 619-6260002-70141851-8044CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/859info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:18Zoai:ri.conicet.gov.ar:11336/98974instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:19.193CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae) Finite element modelling of a tooth refrerred to the genus giganotosaurus coria and salgado, 1995 (Theropoda: Carcharodontosauridae) |
title |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae) |
spellingShingle |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae) Mazzetta, G. V. Teeth Bite force Mechanical strength Finite element analysis CT scanning Giganotosaurus Theropoda Patagonia Dientes Fuerza de mordida Resistencia mecánica Elementos finitos Tomografía computarizada Giganotosaurus Terópodos |
title_short |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae) |
title_full |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae) |
title_fullStr |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae) |
title_full_unstemmed |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae) |
title_sort |
Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae) |
dc.creator.none.fl_str_mv |
Mazzetta, G. V. Blanco, R. E. Cisilino, Adrian Pablo |
author |
Mazzetta, G. V. |
author_facet |
Mazzetta, G. V. Blanco, R. E. Cisilino, Adrian Pablo |
author_role |
author |
author2 |
Blanco, R. E. Cisilino, Adrian Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Teeth Bite force Mechanical strength Finite element analysis CT scanning Giganotosaurus Theropoda Patagonia Dientes Fuerza de mordida Resistencia mecánica Elementos finitos Tomografía computarizada Giganotosaurus Terópodos |
topic |
Teeth Bite force Mechanical strength Finite element analysis CT scanning Giganotosaurus Theropoda Patagonia Dientes Fuerza de mordida Resistencia mecánica Elementos finitos Tomografía computarizada Giganotosaurus Terópodos |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Se estudió cuantitativamente y por vez primera el diseño biomecánico del diente de un dinosaurio. Para ello se generó mediante tomografía computarizada una serie de imágenes transaxiales (separadas a intervalos de 1,5 mm) de una corona dentaria aislada referida al terópodo carnívoro Giganotosaurus (MUCPv-52). Esta técnica no invasiva permite la reconstrucción tridimensional de la geometría de la estructura biológica considerada por lo cual constituye una base adecuada para su modelización con elementos finitos (MEF). La MEF constituye un enfoque matemático que ofrece una precisión sin paralelo para el análisis del campo de tensiones en estructuras tales como los dientes, los cuales in vivo están sujetos a regímenes variables de tensión y deformación. La corona dentaria referida a Giganotosaurus fue discretizada mediante una malla tridimensional de elementos tetraédricos de cuatro nodos. Las condiciones de carga fijadas sobre la corona permitieron simular una mordida estática aplicada verticalmente sobre una presa inmóvil y sobre una presa que ejerce una tracción perpendicular al eje longitudinal del diente. Durante la mordida, las mayores tensiones principales se producen sobre el tercio medio de las superficies anterolabial (las extensivas) y posterolingual (las compresivas) de la corona. Cuando se considera además la carga inducida por la tracción de una hipotética presa, la distribución de las tensiones cambia de manera predecible, observándose las mayores magnitudes extensivas a nivel de la cara posterior de la corona. En tal situación el diente es capaz de resistir tracciones de hasta 10 kN. A quantitative study of the biomechanical design of a dinosaur tooth was carried out for the first time. In doing so, an isolated tooth crown referred to the carnivorous theropod Giganotosaurus (MUCPv-52) was subjected to computerised tomography to obtain a series of transaxial scan images separated by 1.5mm intervals. This non-invasive technique allows the three-dimensional reconstruction of the geometry corresponding to the biological structure considered, which provides an appropriate basis for finite element modelling (FEM). Mathematical approaches as FEM offer unparalleled precision in assessment of the stress environment in such structures as teeth, which in vivo are subjected to varying regimes of stress and strain. The model of the tooth crown referred to Giganotosaurus was meshed creating four-noded tetrahedral elements. The loading conditions settled on the crown allow to simulate a static bite vertically applied on a still prey, and on a prey exerting a pull perpendicular to the long axis of the tooth. The highest principal stresses during the bite were produced at the middle one-third of the anterolabial (tensile ones), and posterolingual (compressive ones) surfaces of the tooth crown. When the load exerted by the pull of an hypothetical prey was also considered, the stress distribution change in a predictable way, with the highest tensile magnitudes at the posterior side of the crown. In such situation, the tooth is capable to withstand pulls up to 10 kN. Fil: Mazzetta, G. V.. Universidad de la República; Uruguay Fil: Blanco, R. E.. Universidad de la República; Uruguay Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
Se estudió cuantitativamente y por vez primera el diseño biomecánico del diente de un dinosaurio. Para ello se generó mediante tomografía computarizada una serie de imágenes transaxiales (separadas a intervalos de 1,5 mm) de una corona dentaria aislada referida al terópodo carnívoro Giganotosaurus (MUCPv-52). Esta técnica no invasiva permite la reconstrucción tridimensional de la geometría de la estructura biológica considerada por lo cual constituye una base adecuada para su modelización con elementos finitos (MEF). La MEF constituye un enfoque matemático que ofrece una precisión sin paralelo para el análisis del campo de tensiones en estructuras tales como los dientes, los cuales in vivo están sujetos a regímenes variables de tensión y deformación. La corona dentaria referida a Giganotosaurus fue discretizada mediante una malla tridimensional de elementos tetraédricos de cuatro nodos. Las condiciones de carga fijadas sobre la corona permitieron simular una mordida estática aplicada verticalmente sobre una presa inmóvil y sobre una presa que ejerce una tracción perpendicular al eje longitudinal del diente. Durante la mordida, las mayores tensiones principales se producen sobre el tercio medio de las superficies anterolabial (las extensivas) y posterolingual (las compresivas) de la corona. Cuando se considera además la carga inducida por la tracción de una hipotética presa, la distribución de las tensiones cambia de manera predecible, observándose las mayores magnitudes extensivas a nivel de la cara posterior de la corona. En tal situación el diente es capaz de resistir tracciones de hasta 10 kN. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98974 Mazzetta, G. V.; Blanco, R. E.; Cisilino, Adrian Pablo; Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae); Asociación Paleontológica Argentina; Ameghiniana; 41; 4; 12-2004; 619-626 0002-7014 1851-8044 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98974 |
identifier_str_mv |
Mazzetta, G. V.; Blanco, R. E.; Cisilino, Adrian Pablo; Modelización con Elementos Finitos de un Diente Referido al Género Giganotosaurus (Theropoda: Carcharodontosauridae); Asociación Paleontológica Argentina; Ameghiniana; 41; 4; 12-2004; 619-626 0002-7014 1851-8044 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/859 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Paleontológica Argentina |
publisher.none.fl_str_mv |
Asociación Paleontológica Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613174567895040 |
score |
13.070432 |