Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution

Autores
Seijas Da Silva, Álvaro; Oestreicher, Víctor; Huck Iriart, Cristián; Mizrahi, Martin Daniel; Hunt, Diego; Ferrari, Valeria Paola; Abellán, Gonzalo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Among the two-dimensional (2D) materials, layered hydroxides (LHs)stand out due to their chemical versatility, allowing the modulation ofphysicochemical properties on demand. Specifically, LHs based onearth-abundant elements are promising phases as electrodematerials for energy storage and conversion. However, thesematerials exhibit significant drawbacks, such as low conductivity andin-plane packing that limits electrolyte diffusion. In this work, weexplored the synthetic flexibility of α-Co hydroxides (Simonkolleite-likestructures) to overcome these limitations. We elucidated the growthmechanism of 3D flower-like α-Co hydroxyhalides by using in situSAXS experiments combined with thorough physicochemical,structural, and electrochemical characterization. Furthermore, wecompared these findings with the most commonly employed Co-based LHs: β-Co(OH)₂ and CoAl layered double hydroxides. While α-Co LH phases inherently grow as 2D materials, the use of ethanol(EtOH) triggers the formation of 3D arrangements of these layers,which surpass their 2D analogues in capacitive behavior. Additionally,by taking advantage of their anion-dependent bandgap, wedemonstrated that substituting halides from chloride to iodideenhances capacitive behavior by more than 40%. This findingconfirms the role of halides in modulating the electronic properties oflayered hydroxides, as supported by DFT+U calculations. Hence, thiswork provides fundamental insights into the 3D growth of α-Co LH andthe critical influence of morphology and halide substitution on theirelectrochemical performance for energy storage applications.
Fil: Seijas Da Silva, Álvaro. Universidad de Valencia; España
Fil: Oestreicher, Víctor. Universidad de Valencia; España
Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Mizrahi, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Hunt, Diego. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Abellán, Gonzalo. Universidad de Valencia; España
Materia
Supercapacitive
Cobalt Layered Hydroxides
DFT+U
electrochemical performance
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/262646

id CONICETDig_aedf467988ead7aee2551a0990fe91e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/262646
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide SubstitutionSeijas Da Silva, ÁlvaroOestreicher, VíctorHuck Iriart, CristiánMizrahi, Martin DanielHunt, DiegoFerrari, Valeria PaolaAbellán, GonzaloSupercapacitiveCobalt Layered HydroxidesDFT+Uelectrochemical performancehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Among the two-dimensional (2D) materials, layered hydroxides (LHs)stand out due to their chemical versatility, allowing the modulation ofphysicochemical properties on demand. Specifically, LHs based onearth-abundant elements are promising phases as electrodematerials for energy storage and conversion. However, thesematerials exhibit significant drawbacks, such as low conductivity andin-plane packing that limits electrolyte diffusion. In this work, weexplored the synthetic flexibility of α-Co hydroxides (Simonkolleite-likestructures) to overcome these limitations. We elucidated the growthmechanism of 3D flower-like α-Co hydroxyhalides by using in situSAXS experiments combined with thorough physicochemical,structural, and electrochemical characterization. Furthermore, wecompared these findings with the most commonly employed Co-based LHs: β-Co(OH)₂ and CoAl layered double hydroxides. While α-Co LH phases inherently grow as 2D materials, the use of ethanol(EtOH) triggers the formation of 3D arrangements of these layers,which surpass their 2D analogues in capacitive behavior. Additionally,by taking advantage of their anion-dependent bandgap, wedemonstrated that substituting halides from chloride to iodideenhances capacitive behavior by more than 40%. This findingconfirms the role of halides in modulating the electronic properties oflayered hydroxides, as supported by DFT+U calculations. Hence, thiswork provides fundamental insights into the 3D growth of α-Co LH andthe critical influence of morphology and halide substitution on theirelectrochemical performance for energy storage applications.Fil: Seijas Da Silva, Álvaro. Universidad de Valencia; EspañaFil: Oestreicher, Víctor. Universidad de Valencia; EspañaFil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; ArgentinaFil: Mizrahi, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Hunt, Diego. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Abellán, Gonzalo. Universidad de Valencia; EspañaWiley2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262646Seijas Da Silva, Álvaro; Oestreicher, Víctor; Huck Iriart, Cristián; Mizrahi, Martin Daniel; Hunt, Diego; et al.; Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution; Wiley; Batteries & Supercaps; 7; 11; 7-2024; 1-172566-6223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202400335info:eu-repo/semantics/altIdentifier/doi/10.1002/batt.202400335info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:57Zoai:ri.conicet.gov.ar:11336/262646instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:57.859CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution
title Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution
spellingShingle Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution
Seijas Da Silva, Álvaro
Supercapacitive
Cobalt Layered Hydroxides
DFT+U
electrochemical performance
title_short Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution
title_full Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution
title_fullStr Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution
title_full_unstemmed Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution
title_sort Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution
dc.creator.none.fl_str_mv Seijas Da Silva, Álvaro
Oestreicher, Víctor
Huck Iriart, Cristián
Mizrahi, Martin Daniel
Hunt, Diego
Ferrari, Valeria Paola
Abellán, Gonzalo
author Seijas Da Silva, Álvaro
author_facet Seijas Da Silva, Álvaro
Oestreicher, Víctor
Huck Iriart, Cristián
Mizrahi, Martin Daniel
Hunt, Diego
Ferrari, Valeria Paola
Abellán, Gonzalo
author_role author
author2 Oestreicher, Víctor
Huck Iriart, Cristián
Mizrahi, Martin Daniel
Hunt, Diego
Ferrari, Valeria Paola
Abellán, Gonzalo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Supercapacitive
Cobalt Layered Hydroxides
DFT+U
electrochemical performance
topic Supercapacitive
Cobalt Layered Hydroxides
DFT+U
electrochemical performance
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Among the two-dimensional (2D) materials, layered hydroxides (LHs)stand out due to their chemical versatility, allowing the modulation ofphysicochemical properties on demand. Specifically, LHs based onearth-abundant elements are promising phases as electrodematerials for energy storage and conversion. However, thesematerials exhibit significant drawbacks, such as low conductivity andin-plane packing that limits electrolyte diffusion. In this work, weexplored the synthetic flexibility of α-Co hydroxides (Simonkolleite-likestructures) to overcome these limitations. We elucidated the growthmechanism of 3D flower-like α-Co hydroxyhalides by using in situSAXS experiments combined with thorough physicochemical,structural, and electrochemical characterization. Furthermore, wecompared these findings with the most commonly employed Co-based LHs: β-Co(OH)₂ and CoAl layered double hydroxides. While α-Co LH phases inherently grow as 2D materials, the use of ethanol(EtOH) triggers the formation of 3D arrangements of these layers,which surpass their 2D analogues in capacitive behavior. Additionally,by taking advantage of their anion-dependent bandgap, wedemonstrated that substituting halides from chloride to iodideenhances capacitive behavior by more than 40%. This findingconfirms the role of halides in modulating the electronic properties oflayered hydroxides, as supported by DFT+U calculations. Hence, thiswork provides fundamental insights into the 3D growth of α-Co LH andthe critical influence of morphology and halide substitution on theirelectrochemical performance for energy storage applications.
Fil: Seijas Da Silva, Álvaro. Universidad de Valencia; España
Fil: Oestreicher, Víctor. Universidad de Valencia; España
Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Mizrahi, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Hunt, Diego. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Abellán, Gonzalo. Universidad de Valencia; España
description Among the two-dimensional (2D) materials, layered hydroxides (LHs)stand out due to their chemical versatility, allowing the modulation ofphysicochemical properties on demand. Specifically, LHs based onearth-abundant elements are promising phases as electrodematerials for energy storage and conversion. However, thesematerials exhibit significant drawbacks, such as low conductivity andin-plane packing that limits electrolyte diffusion. In this work, weexplored the synthetic flexibility of α-Co hydroxides (Simonkolleite-likestructures) to overcome these limitations. We elucidated the growthmechanism of 3D flower-like α-Co hydroxyhalides by using in situSAXS experiments combined with thorough physicochemical,structural, and electrochemical characterization. Furthermore, wecompared these findings with the most commonly employed Co-based LHs: β-Co(OH)₂ and CoAl layered double hydroxides. While α-Co LH phases inherently grow as 2D materials, the use of ethanol(EtOH) triggers the formation of 3D arrangements of these layers,which surpass their 2D analogues in capacitive behavior. Additionally,by taking advantage of their anion-dependent bandgap, wedemonstrated that substituting halides from chloride to iodideenhances capacitive behavior by more than 40%. This findingconfirms the role of halides in modulating the electronic properties oflayered hydroxides, as supported by DFT+U calculations. Hence, thiswork provides fundamental insights into the 3D growth of α-Co LH andthe critical influence of morphology and halide substitution on theirelectrochemical performance for energy storage applications.
publishDate 2024
dc.date.none.fl_str_mv 2024-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/262646
Seijas Da Silva, Álvaro; Oestreicher, Víctor; Huck Iriart, Cristián; Mizrahi, Martin Daniel; Hunt, Diego; et al.; Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution; Wiley; Batteries & Supercaps; 7; 11; 7-2024; 1-17
2566-6223
CONICET Digital
CONICET
url http://hdl.handle.net/11336/262646
identifier_str_mv Seijas Da Silva, Álvaro; Oestreicher, Víctor; Huck Iriart, Cristián; Mizrahi, Martin Daniel; Hunt, Diego; et al.; Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution; Wiley; Batteries & Supercaps; 7; 11; 7-2024; 1-17
2566-6223
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202400335
info:eu-repo/semantics/altIdentifier/doi/10.1002/batt.202400335
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613818981810176
score 13.070432