Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications

Autores
Riccardo, Julián José; Pasinetti, Pedro Marcelo; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The statistical mechanics of structured particles with arbitrary size and shape adsorbed ontodiscrete lattices presents a longstanding theoretical challenge, mainly due to complex spatialcorrelations and entropic effects that emerge at finite densities. Even for simplified systemssuch as hard-core linear k-mers, exact solutions remain limited to low-dimensional or highlyconstrained cases. In this review, we summarize the main theoretical approaches developedby our research group over the past three decades to describe adsorption phenomena involvinglinear k-mers—also known as multisite occupancy adsorption—on regular lattices.We examine modern approximations such as an extension to two dimensions of the exactthermodynamic functions obtained in one dimension, the Fractional Statistical Theory ofAdsorption based on Haldane’s fractional statistics, and the so-called Occupation Balancebased on expansion of the reciprocal of the fugacity, and hybrid approaches such as thesemi-empirical model obtained by combining exact one-dimensional calculations and theGuggenheim–DiMarzio approach. For interacting systems, statistical thermodynamics isexplored within generalized Bragg–Williams and quasi-chemical frameworks. Particularfocus is given to the recently proposed Multiple Exclusion statistics, which capture the correlatedexclusion effects inherent to non-monomeric particles. Applications to monolayerand multilayer adsorption are analyzed, with relevance to hydrocarbon separation technologies.Finally, computational strategies, including advanced Monte Carlo techniques, arereviewed in the context of high-density regimes. This work provides a unified frameworkfor understanding entropic and cooperative effects in lattice-adsorbed polyatomic systemsand highlights promising directions for future theoretical and computational research.
Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Materia
multisite occupancy adsorption
lattice–gas models
statistical thermodynamics
exclusion statistics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/276597

id CONICETDig_ac37b2759a757df7ab8115b0ef392e69
oai_identifier_str oai:ri.conicet.gov.ar:11336/276597
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to ApplicationsRiccardo, Julián JoséPasinetti, Pedro MarceloRiccardo, Jose LuisRamirez Pastor, Antonio Josemultisite occupancy adsorptionlattice–gas modelsstatistical thermodynamicsexclusion statisticshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The statistical mechanics of structured particles with arbitrary size and shape adsorbed ontodiscrete lattices presents a longstanding theoretical challenge, mainly due to complex spatialcorrelations and entropic effects that emerge at finite densities. Even for simplified systemssuch as hard-core linear k-mers, exact solutions remain limited to low-dimensional or highlyconstrained cases. In this review, we summarize the main theoretical approaches developedby our research group over the past three decades to describe adsorption phenomena involvinglinear k-mers—also known as multisite occupancy adsorption—on regular lattices.We examine modern approximations such as an extension to two dimensions of the exactthermodynamic functions obtained in one dimension, the Fractional Statistical Theory ofAdsorption based on Haldane’s fractional statistics, and the so-called Occupation Balancebased on expansion of the reciprocal of the fugacity, and hybrid approaches such as thesemi-empirical model obtained by combining exact one-dimensional calculations and theGuggenheim–DiMarzio approach. For interacting systems, statistical thermodynamics isexplored within generalized Bragg–Williams and quasi-chemical frameworks. Particularfocus is given to the recently proposed Multiple Exclusion statistics, which capture the correlatedexclusion effects inherent to non-monomeric particles. Applications to monolayerand multilayer adsorption are analyzed, with relevance to hydrocarbon separation technologies.Finally, computational strategies, including advanced Monte Carlo techniques, arereviewed in the context of high-density regimes. This work provides a unified frameworkfor understanding entropic and cooperative effects in lattice-adsorbed polyatomic systemsand highlights promising directions for future theoretical and computational research.Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaMolecular Diversity Preservation International2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276597Riccardo, Julián José; Pasinetti, Pedro Marcelo; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications; Molecular Diversity Preservation International; Entropy; 27; 7; 7-20251099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/7/750info:eu-repo/semantics/altIdentifier/doi/10.3390/e27070750info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:44:26Zoai:ri.conicet.gov.ar:11336/276597instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:44:26.771CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
title Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
spellingShingle Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
Riccardo, Julián José
multisite occupancy adsorption
lattice–gas models
statistical thermodynamics
exclusion statistics
title_short Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
title_full Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
title_fullStr Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
title_full_unstemmed Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
title_sort Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications
dc.creator.none.fl_str_mv Riccardo, Julián José
Pasinetti, Pedro Marcelo
Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
author Riccardo, Julián José
author_facet Riccardo, Julián José
Pasinetti, Pedro Marcelo
Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
author_role author
author2 Pasinetti, Pedro Marcelo
Riccardo, Jose Luis
Ramirez Pastor, Antonio Jose
author2_role author
author
author
dc.subject.none.fl_str_mv multisite occupancy adsorption
lattice–gas models
statistical thermodynamics
exclusion statistics
topic multisite occupancy adsorption
lattice–gas models
statistical thermodynamics
exclusion statistics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The statistical mechanics of structured particles with arbitrary size and shape adsorbed ontodiscrete lattices presents a longstanding theoretical challenge, mainly due to complex spatialcorrelations and entropic effects that emerge at finite densities. Even for simplified systemssuch as hard-core linear k-mers, exact solutions remain limited to low-dimensional or highlyconstrained cases. In this review, we summarize the main theoretical approaches developedby our research group over the past three decades to describe adsorption phenomena involvinglinear k-mers—also known as multisite occupancy adsorption—on regular lattices.We examine modern approximations such as an extension to two dimensions of the exactthermodynamic functions obtained in one dimension, the Fractional Statistical Theory ofAdsorption based on Haldane’s fractional statistics, and the so-called Occupation Balancebased on expansion of the reciprocal of the fugacity, and hybrid approaches such as thesemi-empirical model obtained by combining exact one-dimensional calculations and theGuggenheim–DiMarzio approach. For interacting systems, statistical thermodynamics isexplored within generalized Bragg–Williams and quasi-chemical frameworks. Particularfocus is given to the recently proposed Multiple Exclusion statistics, which capture the correlatedexclusion effects inherent to non-monomeric particles. Applications to monolayerand multilayer adsorption are analyzed, with relevance to hydrocarbon separation technologies.Finally, computational strategies, including advanced Monte Carlo techniques, arereviewed in the context of high-density regimes. This work provides a unified frameworkfor understanding entropic and cooperative effects in lattice-adsorbed polyatomic systemsand highlights promising directions for future theoretical and computational research.
Fil: Riccardo, Julián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
description The statistical mechanics of structured particles with arbitrary size and shape adsorbed ontodiscrete lattices presents a longstanding theoretical challenge, mainly due to complex spatialcorrelations and entropic effects that emerge at finite densities. Even for simplified systemssuch as hard-core linear k-mers, exact solutions remain limited to low-dimensional or highlyconstrained cases. In this review, we summarize the main theoretical approaches developedby our research group over the past three decades to describe adsorption phenomena involvinglinear k-mers—also known as multisite occupancy adsorption—on regular lattices.We examine modern approximations such as an extension to two dimensions of the exactthermodynamic functions obtained in one dimension, the Fractional Statistical Theory ofAdsorption based on Haldane’s fractional statistics, and the so-called Occupation Balancebased on expansion of the reciprocal of the fugacity, and hybrid approaches such as thesemi-empirical model obtained by combining exact one-dimensional calculations and theGuggenheim–DiMarzio approach. For interacting systems, statistical thermodynamics isexplored within generalized Bragg–Williams and quasi-chemical frameworks. Particularfocus is given to the recently proposed Multiple Exclusion statistics, which capture the correlatedexclusion effects inherent to non-monomeric particles. Applications to monolayerand multilayer adsorption are analyzed, with relevance to hydrocarbon separation technologies.Finally, computational strategies, including advanced Monte Carlo techniques, arereviewed in the context of high-density regimes. This work provides a unified frameworkfor understanding entropic and cooperative effects in lattice-adsorbed polyatomic systemsand highlights promising directions for future theoretical and computational research.
publishDate 2025
dc.date.none.fl_str_mv 2025-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/276597
Riccardo, Julián José; Pasinetti, Pedro Marcelo; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications; Molecular Diversity Preservation International; Entropy; 27; 7; 7-2025
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/276597
identifier_str_mv Riccardo, Julián José; Pasinetti, Pedro Marcelo; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications; Molecular Diversity Preservation International; Entropy; 27; 7; 7-2025
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/7/750
info:eu-repo/semantics/altIdentifier/doi/10.3390/e27070750
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335356914958336
score 12.952241