Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations
- Autores
- Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The configurational entropy of straight rigid rods of length k (k-mers) adsorbed on square, honeycomb, and triangular lattices is studied by combining theory and Monte Carlo (MC) simulations in grand canonical and canonical ensembles. Three theoretical models to treat k-mer adsorption on two-dimensional lattices have been discussed: (i) the Flory-Huggins approximation and its modification to address linear adsorbates; (ii) the well-known Guggenheim-DiMarzio approximation; and (iii) a simple semi-empirical model obtained by combining exact one-dimensional calculations, its extension to higher dimensions and Guggenheim-DiMarzio approach. On the other hand, grand canonical and canonical MC calculations of the configurational entropy were obtained by using a thermodynamic integration technique. In the second case, the method relies upon the definition of an artificial Hamiltonian associated with the system of interest for which the entropy of a reference state can be exactly known. Thermodynamic integration is then applied to calculate the entropy in a given state of the system of interest. Comparisons between MC simulations and theoretical results were used to test the accuracy and reliability of the models studied.
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
CONFIGURATIONAL ENTROPY
EQUILIBRIUM THERMODYNAMICS AND STATISTICAL MECHANICS
LATTICE-GAS MODELS
MONTE CARLO SIMULATION
MULTISITE-OCCUPANCY ADSORPTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127107
Ver los metadatos del registro completo
id |
CONICETDig_5eefae9bd2611ed4a032082f974fb2dd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127107 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulationsCentres, Paulo MarceloRamirez Pastor, Antonio JoseCONFIGURATIONAL ENTROPYEQUILIBRIUM THERMODYNAMICS AND STATISTICAL MECHANICSLATTICE-GAS MODELSMONTE CARLO SIMULATIONMULTISITE-OCCUPANCY ADSORPTIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The configurational entropy of straight rigid rods of length k (k-mers) adsorbed on square, honeycomb, and triangular lattices is studied by combining theory and Monte Carlo (MC) simulations in grand canonical and canonical ensembles. Three theoretical models to treat k-mer adsorption on two-dimensional lattices have been discussed: (i) the Flory-Huggins approximation and its modification to address linear adsorbates; (ii) the well-known Guggenheim-DiMarzio approximation; and (iii) a simple semi-empirical model obtained by combining exact one-dimensional calculations, its extension to higher dimensions and Guggenheim-DiMarzio approach. On the other hand, grand canonical and canonical MC calculations of the configurational entropy were obtained by using a thermodynamic integration technique. In the second case, the method relies upon the definition of an artificial Hamiltonian associated with the system of interest for which the entropy of a reference state can be exactly known. Thermodynamic integration is then applied to calculate the entropy in a given state of the system of interest. Comparisons between MC simulations and theoretical results were used to test the accuracy and reliability of the models studied.Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaElsevier Science2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127107Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 388; 10; 5-2009; 2001-20190378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378437109000454info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2009.01.038info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:38Zoai:ri.conicet.gov.ar:11336/127107instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:40.332CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations |
title |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations |
spellingShingle |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations Centres, Paulo Marcelo CONFIGURATIONAL ENTROPY EQUILIBRIUM THERMODYNAMICS AND STATISTICAL MECHANICS LATTICE-GAS MODELS MONTE CARLO SIMULATION MULTISITE-OCCUPANCY ADSORPTION |
title_short |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations |
title_full |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations |
title_fullStr |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations |
title_full_unstemmed |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations |
title_sort |
Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations |
dc.creator.none.fl_str_mv |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author |
Centres, Paulo Marcelo |
author_facet |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Ramirez Pastor, Antonio Jose |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONFIGURATIONAL ENTROPY EQUILIBRIUM THERMODYNAMICS AND STATISTICAL MECHANICS LATTICE-GAS MODELS MONTE CARLO SIMULATION MULTISITE-OCCUPANCY ADSORPTION |
topic |
CONFIGURATIONAL ENTROPY EQUILIBRIUM THERMODYNAMICS AND STATISTICAL MECHANICS LATTICE-GAS MODELS MONTE CARLO SIMULATION MULTISITE-OCCUPANCY ADSORPTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The configurational entropy of straight rigid rods of length k (k-mers) adsorbed on square, honeycomb, and triangular lattices is studied by combining theory and Monte Carlo (MC) simulations in grand canonical and canonical ensembles. Three theoretical models to treat k-mer adsorption on two-dimensional lattices have been discussed: (i) the Flory-Huggins approximation and its modification to address linear adsorbates; (ii) the well-known Guggenheim-DiMarzio approximation; and (iii) a simple semi-empirical model obtained by combining exact one-dimensional calculations, its extension to higher dimensions and Guggenheim-DiMarzio approach. On the other hand, grand canonical and canonical MC calculations of the configurational entropy were obtained by using a thermodynamic integration technique. In the second case, the method relies upon the definition of an artificial Hamiltonian associated with the system of interest for which the entropy of a reference state can be exactly known. Thermodynamic integration is then applied to calculate the entropy in a given state of the system of interest. Comparisons between MC simulations and theoretical results were used to test the accuracy and reliability of the models studied. Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
The configurational entropy of straight rigid rods of length k (k-mers) adsorbed on square, honeycomb, and triangular lattices is studied by combining theory and Monte Carlo (MC) simulations in grand canonical and canonical ensembles. Three theoretical models to treat k-mer adsorption on two-dimensional lattices have been discussed: (i) the Flory-Huggins approximation and its modification to address linear adsorbates; (ii) the well-known Guggenheim-DiMarzio approximation; and (iii) a simple semi-empirical model obtained by combining exact one-dimensional calculations, its extension to higher dimensions and Guggenheim-DiMarzio approach. On the other hand, grand canonical and canonical MC calculations of the configurational entropy were obtained by using a thermodynamic integration technique. In the second case, the method relies upon the definition of an artificial Hamiltonian associated with the system of interest for which the entropy of a reference state can be exactly known. Thermodynamic integration is then applied to calculate the entropy in a given state of the system of interest. Comparisons between MC simulations and theoretical results were used to test the accuracy and reliability of the models studied. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127107 Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 388; 10; 5-2009; 2001-2019 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127107 |
identifier_str_mv |
Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Configurational entropy of adsorbed rigid rods: Theory and Monte Carlo simulations; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 388; 10; 5-2009; 2001-2019 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378437109000454 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2009.01.038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268746120429568 |
score |
13.13397 |