Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes
- Autores
- Yin, Xiaoyan; Subramanian, Subha; Willinger, Christine M.; Chen, George; Juhasz, Peter; Courchesne, Paul; Chen, Brian H.; Li, Xiaohang; Hwang, Shih Jen; Fox, Caroline S.; O'Donnell, Christopher J.; Muntendam, Pieter; Fuster, Valentin; Bobeldijk Pastorova, Ivana; Sookoian, Silvia Cristina; Pirola, Carlos José; Gordon, Neal; Adourian, Aram; Larson, Martin G.; Levy, Daniel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- CONTEXT: Metabolic dysregulation underlies key metabolic risk factors—obesity, dyslipidemia, and dysglycemia. OBJECTIVE: To uncover mechanistic links between metabolomic dysregulation and metabolic risk by testing metabolite associations with risk factors cross-sectionally and with risk factor changes over time. DESIGN: Cross-sectional—discovery samples (n = 650; age, 36–69 years) from the Framingham Heart Study (FHS) and replication samples (n = 670; age, 61–76 years) from the BioImage Study, both following a factorial design sampled from high vs low strata of body mass index, lipids, and glucose. Longitudinal—FHS participants (n = 554) with 5–7 years of follow-up for risk factor changes. SETTING: Observational studies. PARTICIPANTS: Cross-sectional samples with or without obesity, dysglycemia, and dyslipidemia, excluding prevalent cardiovascular disease and diabetes or dyslipidemia treatment. Age- and sex-matched by group. INTERVENTIONS: None. MAIN OUTCOME MEASURE(S): Gas chromatography-mass spectrometry detected 119 plasma metabolites. Cross-sectional associations with obesity, dyslipidemia, and dysglycemia were tested in discovery, with external replication of 37 metabolites. Single- and multi-metabolite markers were tested for association with longitudinal changes in risk factors. RESULTS: Cross-sectional metabolite associations were identified with obesity (n = 26), dyslipidemia (n = 21), and dysglycemia (n = 11) in discovery. Glutamic acid, lactic acid, and sitosterol associated with all three risk factors in meta-analysis (P < 4.5 × 10−4). Metabolites associated with longitudinal risk factor changes were enriched for bioactive lipids. Multi-metabolite panels explained 2.5–15.3% of longitudinal changes in metabolic traits. CONCLUSIONS: Cross-sectional results implicated dysregulated glutamate cycling and amino acid metabolism in metabolic risk. Certain bioactive lipids were associated with risk factors cross-sectionally and over time, suggesting their upstream role in risk factor progression. Functional studies are needed to validate findings and facilitate translation into treatments or preventive measures.
Fil: Yin, Xiaoyan. Framingham Heart Study; Estados Unidos. Boston University; Estados Unidos
Fil: Subramanian, Subha. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos
Fil: Willinger, Christine M.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos
Fil: Chen, George. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos
Fil: Juhasz, Peter. BG Medicine; Estados Unidos
Fil: Courchesne, Paul. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos
Fil: Chen, Brian H.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos
Fil: Li, Xiaohang. BG Medicine; Estados Unidos
Fil: Hwang, Shih Jen. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos
Fil: Fox, Caroline S.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Brigham and Women’s Hospital. Department of Medicine; Estados Unidos. Harvard Medical School; Estados Unidos
Fil: O'Donnell, Christopher J.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Massachusetts General Hospital. Department of Medicine; Estados Unidos. Harvard Medical School; Estados Unidos
Fil: Muntendam, Pieter. BG Medicine; Estados Unidos
Fil: Fuster, Valentin. Mt. Sinai School of Medicine; Estados Unidos. Centro Nacional de Investigaciones Cardiovasculares; España. Cedars Sinai Medical Center; Estados Unidos
Fil: Bobeldijk Pastorova, Ivana. TNO Triskelion BV; Países Bajos
Fil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
Fil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
Fil: Gordon, Neal. BG Medicine; Estados Unidos
Fil: Adourian, Aram. BG Medicine; Estados Unidos
Fil: Larson, Martin G.. Framingham Heart Study; Estados Unidos. Boston University; Estados Unidos
Fil: Levy, Daniel. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Boston University; Estados Unidos - Materia
-
Metabolomics
Metabolic Syndrome
Diabetes
Biomarkers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44356
Ver los metadatos del registro completo
id |
CONICETDig_abecd169718b926a43f15968f7ca3642 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44356 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal ChangesYin, XiaoyanSubramanian, SubhaWillinger, Christine M.Chen, GeorgeJuhasz, PeterCourchesne, PaulChen, Brian H.Li, XiaohangHwang, Shih JenFox, Caroline S.O'Donnell, Christopher J.Muntendam, PieterFuster, ValentinBobeldijk Pastorova, IvanaSookoian, Silvia CristinaPirola, Carlos JoséGordon, NealAdourian, AramLarson, Martin G.Levy, DanielMetabolomicsMetabolic SyndromeDiabetesBiomarkershttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3CONTEXT: Metabolic dysregulation underlies key metabolic risk factors—obesity, dyslipidemia, and dysglycemia. OBJECTIVE: To uncover mechanistic links between metabolomic dysregulation and metabolic risk by testing metabolite associations with risk factors cross-sectionally and with risk factor changes over time. DESIGN: Cross-sectional—discovery samples (n = 650; age, 36–69 years) from the Framingham Heart Study (FHS) and replication samples (n = 670; age, 61–76 years) from the BioImage Study, both following a factorial design sampled from high vs low strata of body mass index, lipids, and glucose. Longitudinal—FHS participants (n = 554) with 5–7 years of follow-up for risk factor changes. SETTING: Observational studies. PARTICIPANTS: Cross-sectional samples with or without obesity, dysglycemia, and dyslipidemia, excluding prevalent cardiovascular disease and diabetes or dyslipidemia treatment. Age- and sex-matched by group. INTERVENTIONS: None. MAIN OUTCOME MEASURE(S): Gas chromatography-mass spectrometry detected 119 plasma metabolites. Cross-sectional associations with obesity, dyslipidemia, and dysglycemia were tested in discovery, with external replication of 37 metabolites. Single- and multi-metabolite markers were tested for association with longitudinal changes in risk factors. RESULTS: Cross-sectional metabolite associations were identified with obesity (n = 26), dyslipidemia (n = 21), and dysglycemia (n = 11) in discovery. Glutamic acid, lactic acid, and sitosterol associated with all three risk factors in meta-analysis (P < 4.5 × 10−4). Metabolites associated with longitudinal risk factor changes were enriched for bioactive lipids. Multi-metabolite panels explained 2.5–15.3% of longitudinal changes in metabolic traits. CONCLUSIONS: Cross-sectional results implicated dysregulated glutamate cycling and amino acid metabolism in metabolic risk. Certain bioactive lipids were associated with risk factors cross-sectionally and over time, suggesting their upstream role in risk factor progression. Functional studies are needed to validate findings and facilitate translation into treatments or preventive measures.Fil: Yin, Xiaoyan. Framingham Heart Study; Estados Unidos. Boston University; Estados UnidosFil: Subramanian, Subha. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados UnidosFil: Willinger, Christine M.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados UnidosFil: Chen, George. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados UnidosFil: Juhasz, Peter. BG Medicine; Estados UnidosFil: Courchesne, Paul. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados UnidosFil: Chen, Brian H.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados UnidosFil: Li, Xiaohang. BG Medicine; Estados UnidosFil: Hwang, Shih Jen. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados UnidosFil: Fox, Caroline S.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Brigham and Women’s Hospital. Department of Medicine; Estados Unidos. Harvard Medical School; Estados UnidosFil: O'Donnell, Christopher J.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Massachusetts General Hospital. Department of Medicine; Estados Unidos. Harvard Medical School; Estados UnidosFil: Muntendam, Pieter. BG Medicine; Estados UnidosFil: Fuster, Valentin. Mt. Sinai School of Medicine; Estados Unidos. Centro Nacional de Investigaciones Cardiovasculares; España. Cedars Sinai Medical Center; Estados UnidosFil: Bobeldijk Pastorova, Ivana. TNO Triskelion BV; Países BajosFil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Gordon, Neal. BG Medicine; Estados UnidosFil: Adourian, Aram. BG Medicine; Estados UnidosFil: Larson, Martin G.. Framingham Heart Study; Estados Unidos. Boston University; Estados UnidosFil: Levy, Daniel. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Boston University; Estados UnidosEndocrine Society2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44356Yin, Xiaoyan; Subramanian, Subha; Willinger, Christine M.; Chen, George; Juhasz, Peter; et al.; Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes; Endocrine Society; Journal of Clinical Endocrinology and Metabolism; 101; 4; 4-2016; 1779-17890021-972X1945-7197CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1210/jc.2015-2555info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jcem/article/101/4/1779/2804590info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:38:22Zoai:ri.conicet.gov.ar:11336/44356instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:38:22.706CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes |
title |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes |
spellingShingle |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes Yin, Xiaoyan Metabolomics Metabolic Syndrome Diabetes Biomarkers |
title_short |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes |
title_full |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes |
title_fullStr |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes |
title_full_unstemmed |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes |
title_sort |
Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes |
dc.creator.none.fl_str_mv |
Yin, Xiaoyan Subramanian, Subha Willinger, Christine M. Chen, George Juhasz, Peter Courchesne, Paul Chen, Brian H. Li, Xiaohang Hwang, Shih Jen Fox, Caroline S. O'Donnell, Christopher J. Muntendam, Pieter Fuster, Valentin Bobeldijk Pastorova, Ivana Sookoian, Silvia Cristina Pirola, Carlos José Gordon, Neal Adourian, Aram Larson, Martin G. Levy, Daniel |
author |
Yin, Xiaoyan |
author_facet |
Yin, Xiaoyan Subramanian, Subha Willinger, Christine M. Chen, George Juhasz, Peter Courchesne, Paul Chen, Brian H. Li, Xiaohang Hwang, Shih Jen Fox, Caroline S. O'Donnell, Christopher J. Muntendam, Pieter Fuster, Valentin Bobeldijk Pastorova, Ivana Sookoian, Silvia Cristina Pirola, Carlos José Gordon, Neal Adourian, Aram Larson, Martin G. Levy, Daniel |
author_role |
author |
author2 |
Subramanian, Subha Willinger, Christine M. Chen, George Juhasz, Peter Courchesne, Paul Chen, Brian H. Li, Xiaohang Hwang, Shih Jen Fox, Caroline S. O'Donnell, Christopher J. Muntendam, Pieter Fuster, Valentin Bobeldijk Pastorova, Ivana Sookoian, Silvia Cristina Pirola, Carlos José Gordon, Neal Adourian, Aram Larson, Martin G. Levy, Daniel |
author2_role |
author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Metabolomics Metabolic Syndrome Diabetes Biomarkers |
topic |
Metabolomics Metabolic Syndrome Diabetes Biomarkers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.2 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
CONTEXT: Metabolic dysregulation underlies key metabolic risk factors—obesity, dyslipidemia, and dysglycemia. OBJECTIVE: To uncover mechanistic links between metabolomic dysregulation and metabolic risk by testing metabolite associations with risk factors cross-sectionally and with risk factor changes over time. DESIGN: Cross-sectional—discovery samples (n = 650; age, 36–69 years) from the Framingham Heart Study (FHS) and replication samples (n = 670; age, 61–76 years) from the BioImage Study, both following a factorial design sampled from high vs low strata of body mass index, lipids, and glucose. Longitudinal—FHS participants (n = 554) with 5–7 years of follow-up for risk factor changes. SETTING: Observational studies. PARTICIPANTS: Cross-sectional samples with or without obesity, dysglycemia, and dyslipidemia, excluding prevalent cardiovascular disease and diabetes or dyslipidemia treatment. Age- and sex-matched by group. INTERVENTIONS: None. MAIN OUTCOME MEASURE(S): Gas chromatography-mass spectrometry detected 119 plasma metabolites. Cross-sectional associations with obesity, dyslipidemia, and dysglycemia were tested in discovery, with external replication of 37 metabolites. Single- and multi-metabolite markers were tested for association with longitudinal changes in risk factors. RESULTS: Cross-sectional metabolite associations were identified with obesity (n = 26), dyslipidemia (n = 21), and dysglycemia (n = 11) in discovery. Glutamic acid, lactic acid, and sitosterol associated with all three risk factors in meta-analysis (P < 4.5 × 10−4). Metabolites associated with longitudinal risk factor changes were enriched for bioactive lipids. Multi-metabolite panels explained 2.5–15.3% of longitudinal changes in metabolic traits. CONCLUSIONS: Cross-sectional results implicated dysregulated glutamate cycling and amino acid metabolism in metabolic risk. Certain bioactive lipids were associated with risk factors cross-sectionally and over time, suggesting their upstream role in risk factor progression. Functional studies are needed to validate findings and facilitate translation into treatments or preventive measures. Fil: Yin, Xiaoyan. Framingham Heart Study; Estados Unidos. Boston University; Estados Unidos Fil: Subramanian, Subha. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos Fil: Willinger, Christine M.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos Fil: Chen, George. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos Fil: Juhasz, Peter. BG Medicine; Estados Unidos Fil: Courchesne, Paul. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos Fil: Chen, Brian H.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos Fil: Li, Xiaohang. BG Medicine; Estados Unidos Fil: Hwang, Shih Jen. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos Fil: Fox, Caroline S.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Brigham and Women’s Hospital. Department of Medicine; Estados Unidos. Harvard Medical School; Estados Unidos Fil: O'Donnell, Christopher J.. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Massachusetts General Hospital. Department of Medicine; Estados Unidos. Harvard Medical School; Estados Unidos Fil: Muntendam, Pieter. BG Medicine; Estados Unidos Fil: Fuster, Valentin. Mt. Sinai School of Medicine; Estados Unidos. Centro Nacional de Investigaciones Cardiovasculares; España. Cedars Sinai Medical Center; Estados Unidos Fil: Bobeldijk Pastorova, Ivana. TNO Triskelion BV; Países Bajos Fil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina Fil: Pirola, Carlos José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina Fil: Gordon, Neal. BG Medicine; Estados Unidos Fil: Adourian, Aram. BG Medicine; Estados Unidos Fil: Larson, Martin G.. Framingham Heart Study; Estados Unidos. Boston University; Estados Unidos Fil: Levy, Daniel. Framingham Heart Study; Estados Unidos. National Institutes of Health; Estados Unidos. Boston University; Estados Unidos |
description |
CONTEXT: Metabolic dysregulation underlies key metabolic risk factors—obesity, dyslipidemia, and dysglycemia. OBJECTIVE: To uncover mechanistic links between metabolomic dysregulation and metabolic risk by testing metabolite associations with risk factors cross-sectionally and with risk factor changes over time. DESIGN: Cross-sectional—discovery samples (n = 650; age, 36–69 years) from the Framingham Heart Study (FHS) and replication samples (n = 670; age, 61–76 years) from the BioImage Study, both following a factorial design sampled from high vs low strata of body mass index, lipids, and glucose. Longitudinal—FHS participants (n = 554) with 5–7 years of follow-up for risk factor changes. SETTING: Observational studies. PARTICIPANTS: Cross-sectional samples with or without obesity, dysglycemia, and dyslipidemia, excluding prevalent cardiovascular disease and diabetes or dyslipidemia treatment. Age- and sex-matched by group. INTERVENTIONS: None. MAIN OUTCOME MEASURE(S): Gas chromatography-mass spectrometry detected 119 plasma metabolites. Cross-sectional associations with obesity, dyslipidemia, and dysglycemia were tested in discovery, with external replication of 37 metabolites. Single- and multi-metabolite markers were tested for association with longitudinal changes in risk factors. RESULTS: Cross-sectional metabolite associations were identified with obesity (n = 26), dyslipidemia (n = 21), and dysglycemia (n = 11) in discovery. Glutamic acid, lactic acid, and sitosterol associated with all three risk factors in meta-analysis (P < 4.5 × 10−4). Metabolites associated with longitudinal risk factor changes were enriched for bioactive lipids. Multi-metabolite panels explained 2.5–15.3% of longitudinal changes in metabolic traits. CONCLUSIONS: Cross-sectional results implicated dysregulated glutamate cycling and amino acid metabolism in metabolic risk. Certain bioactive lipids were associated with risk factors cross-sectionally and over time, suggesting their upstream role in risk factor progression. Functional studies are needed to validate findings and facilitate translation into treatments or preventive measures. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44356 Yin, Xiaoyan; Subramanian, Subha; Willinger, Christine M.; Chen, George; Juhasz, Peter; et al.; Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes; Endocrine Society; Journal of Clinical Endocrinology and Metabolism; 101; 4; 4-2016; 1779-1789 0021-972X 1945-7197 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44356 |
identifier_str_mv |
Yin, Xiaoyan; Subramanian, Subha; Willinger, Christine M.; Chen, George; Juhasz, Peter; et al.; Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes; Endocrine Society; Journal of Clinical Endocrinology and Metabolism; 101; 4; 4-2016; 1779-1789 0021-972X 1945-7197 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1210/jc.2015-2555 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jcem/article/101/4/1779/2804590 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Endocrine Society |
publisher.none.fl_str_mv |
Endocrine Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083502489993216 |
score |
13.22299 |