Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability
- Autores
- Haimovich, Hernan; Braslavsky, Julio H.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We address the stabilization of switching linear systems (SLSs) with control inputs under arbitrary switching. A sufficient condition for the stability of autonomous (without control inputs) SLSs is that the individual subsystems are stable and the Lie algebra generated by their evolution matrices is solvable. This sufficient condition for stability is known to be extremely restrictive and therefore of very limited applicability. Our main contribution is to show that, in contrast to the autonomous case, when control inputs are present the existence of feedback matrices for each subsystem so that the corresponding closed-loop matrices satisfy the aforementioned Lie-algebraic stability condition can become a generic property, hence substantially improving the applicability of such Lie-algebraic techniques in some cases. Since the validity of this Lie-algebraic stability condition implies the existence of a common quadratic Lyapunov function (CQLF) for the SLS, our results yield an analytic sufficient condition for the generic existence of a control CQLF for the SLS.
Fil: Haimovich, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ingeniería Electrónica. Departamento de Control. Laboratorio de Sistemas Dinámicos y Procesamiento de Información; Argentina
Fil: Braslavsky, Julio H.. Australian Commonwealth Scientific and Industrial Research Organization. Division of Energy Technology; Australia - Materia
-
Common Quadratic Lyapunov Function
Switching Linear Systems
Uniform Global Exponential Stability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3199
Ver los metadatos del registro completo
id |
CONICETDig_ab60e0baee96a495b3a9c5e9fe84dd3a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3199 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvabilityHaimovich, HernanBraslavsky, Julio H.Common Quadratic Lyapunov FunctionSwitching Linear SystemsUniform Global Exponential Stabilityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2We address the stabilization of switching linear systems (SLSs) with control inputs under arbitrary switching. A sufficient condition for the stability of autonomous (without control inputs) SLSs is that the individual subsystems are stable and the Lie algebra generated by their evolution matrices is solvable. This sufficient condition for stability is known to be extremely restrictive and therefore of very limited applicability. Our main contribution is to show that, in contrast to the autonomous case, when control inputs are present the existence of feedback matrices for each subsystem so that the corresponding closed-loop matrices satisfy the aforementioned Lie-algebraic stability condition can become a generic property, hence substantially improving the applicability of such Lie-algebraic techniques in some cases. Since the validity of this Lie-algebraic stability condition implies the existence of a common quadratic Lyapunov function (CQLF) for the SLS, our results yield an analytic sufficient condition for the generic existence of a control CQLF for the SLS.Fil: Haimovich, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ingeniería Electrónica. Departamento de Control. Laboratorio de Sistemas Dinámicos y Procesamiento de Información; ArgentinaFil: Braslavsky, Julio H.. Australian Commonwealth Scientific and Industrial Research Organization. Division of Energy Technology; AustraliaInstitute of Electrical and Electronics Engineers2013-02-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3199Haimovich, Hernan; Braslavsky, Julio H.; Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability; Institute of Electrical and Electronics Engineers; IEEE Transactions on Automatic Control; 58; 3; 18-2-2013; 814-8200018-9286enginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6298939info:eu-repo/semantics/altIdentifier/doi/10.1109/TAC.2012.2218151info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:44Zoai:ri.conicet.gov.ar:11336/3199instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:44.548CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability |
title |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability |
spellingShingle |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability Haimovich, Hernan Common Quadratic Lyapunov Function Switching Linear Systems Uniform Global Exponential Stability |
title_short |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability |
title_full |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability |
title_fullStr |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability |
title_full_unstemmed |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability |
title_sort |
Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability |
dc.creator.none.fl_str_mv |
Haimovich, Hernan Braslavsky, Julio H. |
author |
Haimovich, Hernan |
author_facet |
Haimovich, Hernan Braslavsky, Julio H. |
author_role |
author |
author2 |
Braslavsky, Julio H. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Common Quadratic Lyapunov Function Switching Linear Systems Uniform Global Exponential Stability |
topic |
Common Quadratic Lyapunov Function Switching Linear Systems Uniform Global Exponential Stability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We address the stabilization of switching linear systems (SLSs) with control inputs under arbitrary switching. A sufficient condition for the stability of autonomous (without control inputs) SLSs is that the individual subsystems are stable and the Lie algebra generated by their evolution matrices is solvable. This sufficient condition for stability is known to be extremely restrictive and therefore of very limited applicability. Our main contribution is to show that, in contrast to the autonomous case, when control inputs are present the existence of feedback matrices for each subsystem so that the corresponding closed-loop matrices satisfy the aforementioned Lie-algebraic stability condition can become a generic property, hence substantially improving the applicability of such Lie-algebraic techniques in some cases. Since the validity of this Lie-algebraic stability condition implies the existence of a common quadratic Lyapunov function (CQLF) for the SLS, our results yield an analytic sufficient condition for the generic existence of a control CQLF for the SLS. Fil: Haimovich, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ingeniería Electrónica. Departamento de Control. Laboratorio de Sistemas Dinámicos y Procesamiento de Información; Argentina Fil: Braslavsky, Julio H.. Australian Commonwealth Scientific and Industrial Research Organization. Division of Energy Technology; Australia |
description |
We address the stabilization of switching linear systems (SLSs) with control inputs under arbitrary switching. A sufficient condition for the stability of autonomous (without control inputs) SLSs is that the individual subsystems are stable and the Lie algebra generated by their evolution matrices is solvable. This sufficient condition for stability is known to be extremely restrictive and therefore of very limited applicability. Our main contribution is to show that, in contrast to the autonomous case, when control inputs are present the existence of feedback matrices for each subsystem so that the corresponding closed-loop matrices satisfy the aforementioned Lie-algebraic stability condition can become a generic property, hence substantially improving the applicability of such Lie-algebraic techniques in some cases. Since the validity of this Lie-algebraic stability condition implies the existence of a common quadratic Lyapunov function (CQLF) for the SLS, our results yield an analytic sufficient condition for the generic existence of a control CQLF for the SLS. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3199 Haimovich, Hernan; Braslavsky, Julio H.; Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability; Institute of Electrical and Electronics Engineers; IEEE Transactions on Automatic Control; 58; 3; 18-2-2013; 814-820 0018-9286 |
url |
http://hdl.handle.net/11336/3199 |
identifier_str_mv |
Haimovich, Hernan; Braslavsky, Julio H.; Sufficient conditions for generic feedback stabilizability of switching systems via lie-algebraic solvability; Institute of Electrical and Electronics Engineers; IEEE Transactions on Automatic Control; 58; 3; 18-2-2013; 814-820 0018-9286 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6298939 info:eu-repo/semantics/altIdentifier/doi/10.1109/TAC.2012.2218151 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613857548435456 |
score |
13.070432 |