Stability of systems with time-varying delay

Autores
Slawiñski, Emanuel; Mut, Vicente Antonio; Postigo, Jose Francisco
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents a useful theoretical extension of the Lyapunov-Krasovskii's theory to analyse the exponential stability of differential equations with time-varying delay. The presented theoretical analysis allows establishing the coefficients of an upper exponential bound of the real response of a delayed system. In addition, we propose stability conditions -delay amplitude independent- applied to linear and non-linear systems with time-varying delay. Based on the Krasovskii-type functional, the proposed functionals incorporate information of the delayed system. The main motivation of this paper is to arrive at conditions of exponential stability that show directly the influence of the time-varying delay and the non-delayed dynamics on the real response of a delayed system. Theoretical results are tested through a numerical example.
Fil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Postigo, Jose Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Materia
THEORETICAL EXTENSION
LYAPUNOV-KRASOVSKII THEORY
EXPONENTIAL STABILITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/244963

id CONICETDig_9efbf0abe352c4e5293c3af8bad9eaf5
oai_identifier_str oai:ri.conicet.gov.ar:11336/244963
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stability of systems with time-varying delaySlawiñski, EmanuelMut, Vicente AntonioPostigo, Jose FranciscoTHEORETICAL EXTENSIONLYAPUNOV-KRASOVSKII THEORYEXPONENTIAL STABILITYhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper presents a useful theoretical extension of the Lyapunov-Krasovskii's theory to analyse the exponential stability of differential equations with time-varying delay. The presented theoretical analysis allows establishing the coefficients of an upper exponential bound of the real response of a delayed system. In addition, we propose stability conditions -delay amplitude independent- applied to linear and non-linear systems with time-varying delay. Based on the Krasovskii-type functional, the proposed functionals incorporate information of the delayed system. The main motivation of this paper is to arrive at conditions of exponential stability that show directly the influence of the time-varying delay and the non-delayed dynamics on the real response of a delayed system. Theoretical results are tested through a numerical example.Fil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Postigo, Jose Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaPlanta Piloto de Ingeniería Química2006-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244963Slawiñski, Emanuel; Mut, Vicente Antonio; Postigo, Jose Francisco; Stability of systems with time-varying delay; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 1; 3-2006; 41-480327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932006000100007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:01Zoai:ri.conicet.gov.ar:11336/244963instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:01.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stability of systems with time-varying delay
title Stability of systems with time-varying delay
spellingShingle Stability of systems with time-varying delay
Slawiñski, Emanuel
THEORETICAL EXTENSION
LYAPUNOV-KRASOVSKII THEORY
EXPONENTIAL STABILITY
title_short Stability of systems with time-varying delay
title_full Stability of systems with time-varying delay
title_fullStr Stability of systems with time-varying delay
title_full_unstemmed Stability of systems with time-varying delay
title_sort Stability of systems with time-varying delay
dc.creator.none.fl_str_mv Slawiñski, Emanuel
Mut, Vicente Antonio
Postigo, Jose Francisco
author Slawiñski, Emanuel
author_facet Slawiñski, Emanuel
Mut, Vicente Antonio
Postigo, Jose Francisco
author_role author
author2 Mut, Vicente Antonio
Postigo, Jose Francisco
author2_role author
author
dc.subject.none.fl_str_mv THEORETICAL EXTENSION
LYAPUNOV-KRASOVSKII THEORY
EXPONENTIAL STABILITY
topic THEORETICAL EXTENSION
LYAPUNOV-KRASOVSKII THEORY
EXPONENTIAL STABILITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper presents a useful theoretical extension of the Lyapunov-Krasovskii's theory to analyse the exponential stability of differential equations with time-varying delay. The presented theoretical analysis allows establishing the coefficients of an upper exponential bound of the real response of a delayed system. In addition, we propose stability conditions -delay amplitude independent- applied to linear and non-linear systems with time-varying delay. Based on the Krasovskii-type functional, the proposed functionals incorporate information of the delayed system. The main motivation of this paper is to arrive at conditions of exponential stability that show directly the influence of the time-varying delay and the non-delayed dynamics on the real response of a delayed system. Theoretical results are tested through a numerical example.
Fil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Postigo, Jose Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
description This paper presents a useful theoretical extension of the Lyapunov-Krasovskii's theory to analyse the exponential stability of differential equations with time-varying delay. The presented theoretical analysis allows establishing the coefficients of an upper exponential bound of the real response of a delayed system. In addition, we propose stability conditions -delay amplitude independent- applied to linear and non-linear systems with time-varying delay. Based on the Krasovskii-type functional, the proposed functionals incorporate information of the delayed system. The main motivation of this paper is to arrive at conditions of exponential stability that show directly the influence of the time-varying delay and the non-delayed dynamics on the real response of a delayed system. Theoretical results are tested through a numerical example.
publishDate 2006
dc.date.none.fl_str_mv 2006-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/244963
Slawiñski, Emanuel; Mut, Vicente Antonio; Postigo, Jose Francisco; Stability of systems with time-varying delay; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 1; 3-2006; 41-48
0327-0793
1851-8796
CONICET Digital
CONICET
url http://hdl.handle.net/11336/244963
identifier_str_mv Slawiñski, Emanuel; Mut, Vicente Antonio; Postigo, Jose Francisco; Stability of systems with time-varying delay; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 1; 3-2006; 41-48
0327-0793
1851-8796
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932006000100007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980436961132544
score 12.993085