Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
- Autores
- Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that above mentioned condition is not only sufficient, but also a necessary one. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Salomone, Leandro Martin. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
ASYMPTOTIC STABILITY
HAMILTONIAN SYSTEMS
LYAPUNOV FUNCTIONS
UNDERACTUATED SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125261
Ver los metadatos del registro completo
id |
CONICETDig_f7c43a38849e5ed05d4df8b570527811 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125261 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedomGrillo, Sergio DanielSalomone, Leandro MartinZuccalli, MarcelaASYMPTOTIC STABILITYHAMILTONIAN SYSTEMSLYAPUNOV FUNCTIONSUNDERACTUATED SYSTEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that above mentioned condition is not only sufficient, but also a necessary one. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Salomone, Leandro Martin. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaInstitute of Computer Science Izhevsk2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125261Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela; Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom; Institute of Computer Science Izhevsk; Russian Journal of Nonlinear Dynamics; 15; 3; 9-2019; 309-3262658-53242658-5316CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ndtest1.ics.org.ru/nd190309/info:eu-repo/semantics/altIdentifier/doi/10.20537/nd190309info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1604.08475info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:29Zoai:ri.conicet.gov.ar:11336/125261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:29.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom |
title |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom |
spellingShingle |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom Grillo, Sergio Daniel ASYMPTOTIC STABILITY HAMILTONIAN SYSTEMS LYAPUNOV FUNCTIONS UNDERACTUATED SYSTEMS |
title_short |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom |
title_full |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom |
title_fullStr |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom |
title_full_unstemmed |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom |
title_sort |
Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom |
dc.creator.none.fl_str_mv |
Grillo, Sergio Daniel Salomone, Leandro Martin Zuccalli, Marcela |
author |
Grillo, Sergio Daniel |
author_facet |
Grillo, Sergio Daniel Salomone, Leandro Martin Zuccalli, Marcela |
author_role |
author |
author2 |
Salomone, Leandro Martin Zuccalli, Marcela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ASYMPTOTIC STABILITY HAMILTONIAN SYSTEMS LYAPUNOV FUNCTIONS UNDERACTUATED SYSTEMS |
topic |
ASYMPTOTIC STABILITY HAMILTONIAN SYSTEMS LYAPUNOV FUNCTIONS UNDERACTUATED SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that above mentioned condition is not only sufficient, but also a necessary one. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability. Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Salomone, Leandro Martin. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that above mentioned condition is not only sufficient, but also a necessary one. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125261 Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela; Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom; Institute of Computer Science Izhevsk; Russian Journal of Nonlinear Dynamics; 15; 3; 9-2019; 309-326 2658-5324 2658-5316 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125261 |
identifier_str_mv |
Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela; Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom; Institute of Computer Science Izhevsk; Russian Journal of Nonlinear Dynamics; 15; 3; 9-2019; 309-326 2658-5324 2658-5316 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ndtest1.ics.org.ru/nd190309/ info:eu-repo/semantics/altIdentifier/doi/10.20537/nd190309 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1604.08475 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Computer Science Izhevsk |
publisher.none.fl_str_mv |
Institute of Computer Science Izhevsk |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981358463352832 |
score |
12.48226 |