Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom

Autores
Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that above mentioned condition is not only sufficient, but also a necessary one. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Salomone, Leandro Martin. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Materia
ASYMPTOTIC STABILITY
HAMILTONIAN SYSTEMS
LYAPUNOV FUNCTIONS
UNDERACTUATED SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125261

id CONICETDig_f7c43a38849e5ed05d4df8b570527811
oai_identifier_str oai:ri.conicet.gov.ar:11336/125261
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedomGrillo, Sergio DanielSalomone, Leandro MartinZuccalli, MarcelaASYMPTOTIC STABILITYHAMILTONIAN SYSTEMSLYAPUNOV FUNCTIONSUNDERACTUATED SYSTEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that above mentioned condition is not only sufficient, but also a necessary one. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Salomone, Leandro Martin. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaInstitute of Computer Science Izhevsk2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125261Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela; Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom; Institute of Computer Science Izhevsk; Russian Journal of Nonlinear Dynamics; 15; 3; 9-2019; 309-3262658-53242658-5316CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ndtest1.ics.org.ru/nd190309/info:eu-repo/semantics/altIdentifier/doi/10.20537/nd190309info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1604.08475info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:29Zoai:ri.conicet.gov.ar:11336/125261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:29.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
title Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
spellingShingle Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
Grillo, Sergio Daniel
ASYMPTOTIC STABILITY
HAMILTONIAN SYSTEMS
LYAPUNOV FUNCTIONS
UNDERACTUATED SYSTEMS
title_short Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
title_full Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
title_fullStr Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
title_full_unstemmed Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
title_sort Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom
dc.creator.none.fl_str_mv Grillo, Sergio Daniel
Salomone, Leandro Martin
Zuccalli, Marcela
author Grillo, Sergio Daniel
author_facet Grillo, Sergio Daniel
Salomone, Leandro Martin
Zuccalli, Marcela
author_role author
author2 Salomone, Leandro Martin
Zuccalli, Marcela
author2_role author
author
dc.subject.none.fl_str_mv ASYMPTOTIC STABILITY
HAMILTONIAN SYSTEMS
LYAPUNOV FUNCTIONS
UNDERACTUATED SYSTEMS
topic ASYMPTOTIC STABILITY
HAMILTONIAN SYSTEMS
LYAPUNOV FUNCTIONS
UNDERACTUATED SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that above mentioned condition is not only sufficient, but also a necessary one. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Salomone, Leandro Martin. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
description For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that above mentioned condition is not only sufficient, but also a necessary one. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125261
Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela; Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom; Institute of Computer Science Izhevsk; Russian Journal of Nonlinear Dynamics; 15; 3; 9-2019; 309-326
2658-5324
2658-5316
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125261
identifier_str_mv Grillo, Sergio Daniel; Salomone, Leandro Martin; Zuccalli, Marcela; Asymptotic stabilizability of underactuated Hamiltonian systems with two degrees of freedom; Institute of Computer Science Izhevsk; Russian Journal of Nonlinear Dynamics; 15; 3; 9-2019; 309-326
2658-5324
2658-5316
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ndtest1.ics.org.ru/nd190309/
info:eu-repo/semantics/altIdentifier/doi/10.20537/nd190309
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1604.08475
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Computer Science Izhevsk
publisher.none.fl_str_mv Institute of Computer Science Izhevsk
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981358463352832
score 12.48226