Predicting vacancy migration energies in lattice-free environments using artificial neural networks
- Autores
- Castin, Nicolas; Fernández, J. R.; Pasianot, Roberto Cesar
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose a methodology for predicting migration energies associated to the migration of single atoms towards vacant sites, using artificial neural networks. The novelty of the approach, which has already been proven efficient for bulk materials (e.g. bcc or fcc Fe-based alloys), is to allow for any structure, without restriction to a specific lattice. The proposed technique is designed in conjunction with a novel kind of lattice-free atomistic kinetic Monte Carlo model. The idea is to avoid as much as possible heavy atomistic simulations, e.g. static relaxation or general methods for finding transition paths. Such calculations, however, are applied once per Monte Carlo event, when a selected event is applied. The objective of this work is thus to propose a methodology for defining migration events at every step of the simulation, and at the same time assigning a frequency of occurrence to them (using artificial neural networks), in short computing times. We demonstrate the feasibility of this new concept by designing neural networks for predicting vacancy migration energies near grain boundaries in bcc FeCr alloys.
Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Nuclear Materials Science Institute. Belgian Nuclear Research Centre; Bélgica
Fil: Fernández, J. R.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina - Materia
-
Kinetic Montecarlo
Lattice Free
Artificial Neural Networks
Diffusion
Grain Boundaries - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32761
Ver los metadatos del registro completo
id |
CONICETDig_aa6ca4f798462565868bf243e28abcbc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32761 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predicting vacancy migration energies in lattice-free environments using artificial neural networksCastin, NicolasFernández, J. R.Pasianot, Roberto CesarKinetic MontecarloLattice FreeArtificial Neural NetworksDiffusionGrain Boundarieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We propose a methodology for predicting migration energies associated to the migration of single atoms towards vacant sites, using artificial neural networks. The novelty of the approach, which has already been proven efficient for bulk materials (e.g. bcc or fcc Fe-based alloys), is to allow for any structure, without restriction to a specific lattice. The proposed technique is designed in conjunction with a novel kind of lattice-free atomistic kinetic Monte Carlo model. The idea is to avoid as much as possible heavy atomistic simulations, e.g. static relaxation or general methods for finding transition paths. Such calculations, however, are applied once per Monte Carlo event, when a selected event is applied. The objective of this work is thus to propose a methodology for defining migration events at every step of the simulation, and at the same time assigning a frequency of occurrence to them (using artificial neural networks), in short computing times. We demonstrate the feasibility of this new concept by designing neural networks for predicting vacancy migration energies near grain boundaries in bcc FeCr alloys.Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Nuclear Materials Science Institute. Belgian Nuclear Research Centre; BélgicaFil: Fernández, J. R.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); ArgentinaElsevier2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32761Pasianot, Roberto Cesar; Fernández, J. R.; Castin, Nicolas; Predicting vacancy migration energies in lattice-free environments using artificial neural networks; Elsevier; Computational Materials Science; 84; 12-2013; 217-2250927-0256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025613007659info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2013.12.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:22:24Zoai:ri.conicet.gov.ar:11336/32761instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:22:24.667CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predicting vacancy migration energies in lattice-free environments using artificial neural networks |
title |
Predicting vacancy migration energies in lattice-free environments using artificial neural networks |
spellingShingle |
Predicting vacancy migration energies in lattice-free environments using artificial neural networks Castin, Nicolas Kinetic Montecarlo Lattice Free Artificial Neural Networks Diffusion Grain Boundaries |
title_short |
Predicting vacancy migration energies in lattice-free environments using artificial neural networks |
title_full |
Predicting vacancy migration energies in lattice-free environments using artificial neural networks |
title_fullStr |
Predicting vacancy migration energies in lattice-free environments using artificial neural networks |
title_full_unstemmed |
Predicting vacancy migration energies in lattice-free environments using artificial neural networks |
title_sort |
Predicting vacancy migration energies in lattice-free environments using artificial neural networks |
dc.creator.none.fl_str_mv |
Castin, Nicolas Fernández, J. R. Pasianot, Roberto Cesar |
author |
Castin, Nicolas |
author_facet |
Castin, Nicolas Fernández, J. R. Pasianot, Roberto Cesar |
author_role |
author |
author2 |
Fernández, J. R. Pasianot, Roberto Cesar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Kinetic Montecarlo Lattice Free Artificial Neural Networks Diffusion Grain Boundaries |
topic |
Kinetic Montecarlo Lattice Free Artificial Neural Networks Diffusion Grain Boundaries |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose a methodology for predicting migration energies associated to the migration of single atoms towards vacant sites, using artificial neural networks. The novelty of the approach, which has already been proven efficient for bulk materials (e.g. bcc or fcc Fe-based alloys), is to allow for any structure, without restriction to a specific lattice. The proposed technique is designed in conjunction with a novel kind of lattice-free atomistic kinetic Monte Carlo model. The idea is to avoid as much as possible heavy atomistic simulations, e.g. static relaxation or general methods for finding transition paths. Such calculations, however, are applied once per Monte Carlo event, when a selected event is applied. The objective of this work is thus to propose a methodology for defining migration events at every step of the simulation, and at the same time assigning a frequency of occurrence to them (using artificial neural networks), in short computing times. We demonstrate the feasibility of this new concept by designing neural networks for predicting vacancy migration energies near grain boundaries in bcc FeCr alloys. Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Nuclear Materials Science Institute. Belgian Nuclear Research Centre; Bélgica Fil: Fernández, J. R.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina |
description |
We propose a methodology for predicting migration energies associated to the migration of single atoms towards vacant sites, using artificial neural networks. The novelty of the approach, which has already been proven efficient for bulk materials (e.g. bcc or fcc Fe-based alloys), is to allow for any structure, without restriction to a specific lattice. The proposed technique is designed in conjunction with a novel kind of lattice-free atomistic kinetic Monte Carlo model. The idea is to avoid as much as possible heavy atomistic simulations, e.g. static relaxation or general methods for finding transition paths. Such calculations, however, are applied once per Monte Carlo event, when a selected event is applied. The objective of this work is thus to propose a methodology for defining migration events at every step of the simulation, and at the same time assigning a frequency of occurrence to them (using artificial neural networks), in short computing times. We demonstrate the feasibility of this new concept by designing neural networks for predicting vacancy migration energies near grain boundaries in bcc FeCr alloys. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32761 Pasianot, Roberto Cesar; Fernández, J. R.; Castin, Nicolas; Predicting vacancy migration energies in lattice-free environments using artificial neural networks; Elsevier; Computational Materials Science; 84; 12-2013; 217-225 0927-0256 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32761 |
identifier_str_mv |
Pasianot, Roberto Cesar; Fernández, J. R.; Castin, Nicolas; Predicting vacancy migration energies in lattice-free environments using artificial neural networks; Elsevier; Computational Materials Science; 84; 12-2013; 217-225 0927-0256 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025613007659 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2013.12.016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781741078937600 |
score |
12.982451 |