Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity

Autores
Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; Chen, Cheng
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions.
Fil: Xu, Zhenghua. University of Oxford; Reino Unido
Fil: Tifrea-Marciuska, Oana. Bloomberg; Reino Unido
Fil: Lukasiewicz, Thomas. University of Oxford; Reino Unido
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Chen, Cheng. China Academy of Electronics and Information Technology; China
Materia
FOLKSONOMIES
ONTOLOGICAL SIMILARITY
PERSONALIZED RECOMMENDATION
SOCIAL TAGS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89025

id CONICETDig_a9ac121052aafa2dd4302ea46d154ede
oai_identifier_str oai:ri.conicet.gov.ar:11336/89025
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological SimilarityXu, ZhenghuaTifrea-Marciuska, OanaLukasiewicz, ThomasMartinez, Maria VaninaSimari, GerardoChen, ChengFOLKSONOMIESONTOLOGICAL SIMILARITYPERSONALIZED RECOMMENDATIONSOCIAL TAGShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions.Fil: Xu, Zhenghua. University of Oxford; Reino UnidoFil: Tifrea-Marciuska, Oana. Bloomberg; Reino UnidoFil: Lukasiewicz, Thomas. University of Oxford; Reino UnidoFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Chen, Cheng. China Academy of Electronics and Information Technology; ChinaInstitute of Electrical and Electronics Engineers Inc.2018-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89025Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; et al.; Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 6; 26-6-2018; 35590-356102169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8396258info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2018.2850762info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:23Zoai:ri.conicet.gov.ar:11336/89025instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:23.743CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
title Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
spellingShingle Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
Xu, Zhenghua
FOLKSONOMIES
ONTOLOGICAL SIMILARITY
PERSONALIZED RECOMMENDATION
SOCIAL TAGS
title_short Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
title_full Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
title_fullStr Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
title_full_unstemmed Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
title_sort Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
dc.creator.none.fl_str_mv Xu, Zhenghua
Tifrea-Marciuska, Oana
Lukasiewicz, Thomas
Martinez, Maria Vanina
Simari, Gerardo
Chen, Cheng
author Xu, Zhenghua
author_facet Xu, Zhenghua
Tifrea-Marciuska, Oana
Lukasiewicz, Thomas
Martinez, Maria Vanina
Simari, Gerardo
Chen, Cheng
author_role author
author2 Tifrea-Marciuska, Oana
Lukasiewicz, Thomas
Martinez, Maria Vanina
Simari, Gerardo
Chen, Cheng
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv FOLKSONOMIES
ONTOLOGICAL SIMILARITY
PERSONALIZED RECOMMENDATION
SOCIAL TAGS
topic FOLKSONOMIES
ONTOLOGICAL SIMILARITY
PERSONALIZED RECOMMENDATION
SOCIAL TAGS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions.
Fil: Xu, Zhenghua. University of Oxford; Reino Unido
Fil: Tifrea-Marciuska, Oana. Bloomberg; Reino Unido
Fil: Lukasiewicz, Thomas. University of Oxford; Reino Unido
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Chen, Cheng. China Academy of Electronics and Information Technology; China
description With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89025
Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; et al.; Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 6; 26-6-2018; 35590-35610
2169-3536
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89025
identifier_str_mv Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; et al.; Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 6; 26-6-2018; 35590-35610
2169-3536
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8396258
info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2018.2850762
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083051607556096
score 13.22299