Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity
- Autores
- Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; Chen, Cheng
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions.
Fil: Xu, Zhenghua. University of Oxford; Reino Unido
Fil: Tifrea-Marciuska, Oana. Bloomberg; Reino Unido
Fil: Lukasiewicz, Thomas. University of Oxford; Reino Unido
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Chen, Cheng. China Academy of Electronics and Information Technology; China - Materia
-
FOLKSONOMIES
ONTOLOGICAL SIMILARITY
PERSONALIZED RECOMMENDATION
SOCIAL TAGS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89025
Ver los metadatos del registro completo
id |
CONICETDig_a9ac121052aafa2dd4302ea46d154ede |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89025 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological SimilarityXu, ZhenghuaTifrea-Marciuska, OanaLukasiewicz, ThomasMartinez, Maria VaninaSimari, GerardoChen, ChengFOLKSONOMIESONTOLOGICAL SIMILARITYPERSONALIZED RECOMMENDATIONSOCIAL TAGShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions.Fil: Xu, Zhenghua. University of Oxford; Reino UnidoFil: Tifrea-Marciuska, Oana. Bloomberg; Reino UnidoFil: Lukasiewicz, Thomas. University of Oxford; Reino UnidoFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Chen, Cheng. China Academy of Electronics and Information Technology; ChinaInstitute of Electrical and Electronics Engineers Inc.2018-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89025Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; et al.; Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 6; 26-6-2018; 35590-356102169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8396258info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2018.2850762info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:23Zoai:ri.conicet.gov.ar:11336/89025instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:23.743CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity |
title |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity |
spellingShingle |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity Xu, Zhenghua FOLKSONOMIES ONTOLOGICAL SIMILARITY PERSONALIZED RECOMMENDATION SOCIAL TAGS |
title_short |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity |
title_full |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity |
title_fullStr |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity |
title_full_unstemmed |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity |
title_sort |
Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity |
dc.creator.none.fl_str_mv |
Xu, Zhenghua Tifrea-Marciuska, Oana Lukasiewicz, Thomas Martinez, Maria Vanina Simari, Gerardo Chen, Cheng |
author |
Xu, Zhenghua |
author_facet |
Xu, Zhenghua Tifrea-Marciuska, Oana Lukasiewicz, Thomas Martinez, Maria Vanina Simari, Gerardo Chen, Cheng |
author_role |
author |
author2 |
Tifrea-Marciuska, Oana Lukasiewicz, Thomas Martinez, Maria Vanina Simari, Gerardo Chen, Cheng |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
FOLKSONOMIES ONTOLOGICAL SIMILARITY PERSONALIZED RECOMMENDATION SOCIAL TAGS |
topic |
FOLKSONOMIES ONTOLOGICAL SIMILARITY PERSONALIZED RECOMMENDATION SOCIAL TAGS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions. Fil: Xu, Zhenghua. University of Oxford; Reino Unido Fil: Tifrea-Marciuska, Oana. Bloomberg; Reino Unido Fil: Lukasiewicz, Thomas. University of Oxford; Reino Unido Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Chen, Cheng. China Academy of Electronics and Information Technology; China |
description |
With the rapid growth of social tagging systems, many research efforts are being put intopersonalized search and recommendation using social tags (i.e., folksonomies). As users can freely choosetheir own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonymsor synonyms). Machine learning techniques (such as clustering and deep neural networks) are usuallyapplied to overcome this tag ambiguity problem. However, the machine-learning-based solutions alwaysneed very powerful computing facilities to train recommendation models from a large amount of data,so they are inappropriate to be used in lightweight recommender systems. In this work, we propose anontological similarity to tackle the tag ambiguity problem without the need of model training by usingcontextual information. The novelty of this ontological similarity is that it first leverages external domainontologies to disambiguate tag information, and then semantically quantifies the relevance between userand item profiles according to the semantic similarity of the matching concepts of tags in the respectiveprofiles. Our experiments show that the proposed ontological similarity is semantically more accurate thanthe state-of-the-art similarity metrics, and can thus be applied to improve the performance of content-based tag-aware personalized recommendation on the Social Web. Consequently, as a model-training-freesolution, ontological similarity is a good disambiguation choice for lightweight recommender systems anda complement to machine-learning-based recommendation solutions. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89025 Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; et al.; Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 6; 26-6-2018; 35590-35610 2169-3536 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89025 |
identifier_str_mv |
Xu, Zhenghua; Tifrea-Marciuska, Oana; Lukasiewicz, Thomas; Martinez, Maria Vanina; Simari, Gerardo; et al.; Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 6; 26-6-2018; 35590-35610 2169-3536 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8396258 info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2018.2850762 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083051607556096 |
score |
13.22299 |