Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions

Autores
Garelli, Andres
Año de publicación
2018
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The capacity to replace damaged tissues is a common characteristic in most metazoans. However, the regenerative competence of different tissues can vary significantly between animal groups and their life cycle stages. In arthropods, the ability to regenerate external structures is limited to the growth phases of their life cycles and is tightly coordinated with molting due to growth restrictions imposed by the hard exoskeleton. Accordingly, crabs, which can grow and molt after reaching maturity, can regenerate legs throughout their life, but insects lose this capacity as they reach adulthood and stop growing. The potential fitness impairment that results from the inability to regenerate injured structures is bypassed in insects by tissue-damaged triggered mechanisms that have evolved to extend the growth-competent period and provide extra time for regeneration. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in Drosophila. The insulin/relaxin-like peptide, Drosophila insulin-like peptide 8 (Dilp8), was identified as a factor communicating abnormal growth status of Drosophila larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. We found that dilp8 is highly and specifically expressed in imaginal discs in response to a variety of growth alterations and requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. Imaginal discderived Dilp8 acts on four central nervous system Lgr3- positive neurons to activate cyclic-AMP signaling. This delays the induction of the transcription of enzymes in the ecdysone synthesis cascade and causes a reduction in ecdysone hormone production, which leads to an extension of the larval growth period and a simultaneous restriction of the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. Similarities between the Dilp8-Lgr3 pathway controlling larval-to-pupal transitions and the hypothalamic-pituitary axis in vertebrates suggest that relaxins might be part of an ancient stress-responsive pathway coordinating animal growth and maturation timing. Analysis of dilp8 expression pattern suggests that the Dilp8-Lgr3 pathway might have other functions at different life history stages. Dilp8 is expressed in the ovary and in multiple pulses close to the ecdysone surges that control major developmental transitions. The highest expression is reached at the larval to pupal transition, when the larva shortens and hardens its cuticle to acquire a typical barrel shape. Interestingly, both dilp8 and Lgr3 mutants show defective puparium contraction. Recent data show that dilp8 is expressed in the epidermis and received by a population of Lgr3+ neurons different from those involved in growth coordination. Our results indicate that the Dilp8-Lgr3 pathway has multiple conserved roles in insect development which involve parallel neuroendocrine circuits.
Fil: Garelli, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
54th Annual Meeting of the Argentine Society for Biochemistry and Molecular Biology
Paraná
Argentina
Sociedad Argentina de Investigación Bioquímica y Biología Molecular
Materia
DROSOPHILA
LGR3
DILP8
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219855

id CONICETDig_a80af87a6f8b45f4ef1df3aa95c382e2
oai_identifier_str oai:ri.conicet.gov.ar:11336/219855
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitionsGarelli, AndresDROSOPHILALGR3DILP8https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The capacity to replace damaged tissues is a common characteristic in most metazoans. However, the regenerative competence of different tissues can vary significantly between animal groups and their life cycle stages. In arthropods, the ability to regenerate external structures is limited to the growth phases of their life cycles and is tightly coordinated with molting due to growth restrictions imposed by the hard exoskeleton. Accordingly, crabs, which can grow and molt after reaching maturity, can regenerate legs throughout their life, but insects lose this capacity as they reach adulthood and stop growing. The potential fitness impairment that results from the inability to regenerate injured structures is bypassed in insects by tissue-damaged triggered mechanisms that have evolved to extend the growth-competent period and provide extra time for regeneration. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in Drosophila. The insulin/relaxin-like peptide, Drosophila insulin-like peptide 8 (Dilp8), was identified as a factor communicating abnormal growth status of Drosophila larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. We found that dilp8 is highly and specifically expressed in imaginal discs in response to a variety of growth alterations and requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. Imaginal discderived Dilp8 acts on four central nervous system Lgr3- positive neurons to activate cyclic-AMP signaling. This delays the induction of the transcription of enzymes in the ecdysone synthesis cascade and causes a reduction in ecdysone hormone production, which leads to an extension of the larval growth period and a simultaneous restriction of the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. Similarities between the Dilp8-Lgr3 pathway controlling larval-to-pupal transitions and the hypothalamic-pituitary axis in vertebrates suggest that relaxins might be part of an ancient stress-responsive pathway coordinating animal growth and maturation timing. Analysis of dilp8 expression pattern suggests that the Dilp8-Lgr3 pathway might have other functions at different life history stages. Dilp8 is expressed in the ovary and in multiple pulses close to the ecdysone surges that control major developmental transitions. The highest expression is reached at the larval to pupal transition, when the larva shortens and hardens its cuticle to acquire a typical barrel shape. Interestingly, both dilp8 and Lgr3 mutants show defective puparium contraction. Recent data show that dilp8 is expressed in the epidermis and received by a population of Lgr3+ neurons different from those involved in growth coordination. Our results indicate that the Dilp8-Lgr3 pathway has multiple conserved roles in insect development which involve parallel neuroendocrine circuits.Fil: Garelli, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina54th Annual Meeting of the Argentine Society for Biochemistry and Molecular BiologyParanáArgentinaSociedad Argentina de Investigación Bioquímica y Biología MolecularTech Science Press2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219855Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions; 54th Annual Meeting of the Argentine Society for Biochemistry and Molecular Biology; Paraná; Argentina; 2018; 39-391667-5746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sbbmch.cl/wp-content/uploads/2018/10/SAIB_2018.pdfinfo:eu-repo/semantics/altIdentifier/url/https://www.techscience.com/biocell/v42nSuppl.4/33869Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:45Zoai:ri.conicet.gov.ar:11336/219855instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:45.395CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions
title Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions
spellingShingle Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions
Garelli, Andres
DROSOPHILA
LGR3
DILP8
title_short Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions
title_full Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions
title_fullStr Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions
title_full_unstemmed Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions
title_sort Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions
dc.creator.none.fl_str_mv Garelli, Andres
author Garelli, Andres
author_facet Garelli, Andres
author_role author
dc.subject.none.fl_str_mv DROSOPHILA
LGR3
DILP8
topic DROSOPHILA
LGR3
DILP8
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The capacity to replace damaged tissues is a common characteristic in most metazoans. However, the regenerative competence of different tissues can vary significantly between animal groups and their life cycle stages. In arthropods, the ability to regenerate external structures is limited to the growth phases of their life cycles and is tightly coordinated with molting due to growth restrictions imposed by the hard exoskeleton. Accordingly, crabs, which can grow and molt after reaching maturity, can regenerate legs throughout their life, but insects lose this capacity as they reach adulthood and stop growing. The potential fitness impairment that results from the inability to regenerate injured structures is bypassed in insects by tissue-damaged triggered mechanisms that have evolved to extend the growth-competent period and provide extra time for regeneration. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in Drosophila. The insulin/relaxin-like peptide, Drosophila insulin-like peptide 8 (Dilp8), was identified as a factor communicating abnormal growth status of Drosophila larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. We found that dilp8 is highly and specifically expressed in imaginal discs in response to a variety of growth alterations and requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. Imaginal discderived Dilp8 acts on four central nervous system Lgr3- positive neurons to activate cyclic-AMP signaling. This delays the induction of the transcription of enzymes in the ecdysone synthesis cascade and causes a reduction in ecdysone hormone production, which leads to an extension of the larval growth period and a simultaneous restriction of the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. Similarities between the Dilp8-Lgr3 pathway controlling larval-to-pupal transitions and the hypothalamic-pituitary axis in vertebrates suggest that relaxins might be part of an ancient stress-responsive pathway coordinating animal growth and maturation timing. Analysis of dilp8 expression pattern suggests that the Dilp8-Lgr3 pathway might have other functions at different life history stages. Dilp8 is expressed in the ovary and in multiple pulses close to the ecdysone surges that control major developmental transitions. The highest expression is reached at the larval to pupal transition, when the larva shortens and hardens its cuticle to acquire a typical barrel shape. Interestingly, both dilp8 and Lgr3 mutants show defective puparium contraction. Recent data show that dilp8 is expressed in the epidermis and received by a population of Lgr3+ neurons different from those involved in growth coordination. Our results indicate that the Dilp8-Lgr3 pathway has multiple conserved roles in insect development which involve parallel neuroendocrine circuits.
Fil: Garelli, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
54th Annual Meeting of the Argentine Society for Biochemistry and Molecular Biology
Paraná
Argentina
Sociedad Argentina de Investigación Bioquímica y Biología Molecular
description The capacity to replace damaged tissues is a common characteristic in most metazoans. However, the regenerative competence of different tissues can vary significantly between animal groups and their life cycle stages. In arthropods, the ability to regenerate external structures is limited to the growth phases of their life cycles and is tightly coordinated with molting due to growth restrictions imposed by the hard exoskeleton. Accordingly, crabs, which can grow and molt after reaching maturity, can regenerate legs throughout their life, but insects lose this capacity as they reach adulthood and stop growing. The potential fitness impairment that results from the inability to regenerate injured structures is bypassed in insects by tissue-damaged triggered mechanisms that have evolved to extend the growth-competent period and provide extra time for regeneration. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in Drosophila. The insulin/relaxin-like peptide, Drosophila insulin-like peptide 8 (Dilp8), was identified as a factor communicating abnormal growth status of Drosophila larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. We found that dilp8 is highly and specifically expressed in imaginal discs in response to a variety of growth alterations and requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. Imaginal discderived Dilp8 acts on four central nervous system Lgr3- positive neurons to activate cyclic-AMP signaling. This delays the induction of the transcription of enzymes in the ecdysone synthesis cascade and causes a reduction in ecdysone hormone production, which leads to an extension of the larval growth period and a simultaneous restriction of the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. Similarities between the Dilp8-Lgr3 pathway controlling larval-to-pupal transitions and the hypothalamic-pituitary axis in vertebrates suggest that relaxins might be part of an ancient stress-responsive pathway coordinating animal growth and maturation timing. Analysis of dilp8 expression pattern suggests that the Dilp8-Lgr3 pathway might have other functions at different life history stages. Dilp8 is expressed in the ovary and in multiple pulses close to the ecdysone surges that control major developmental transitions. The highest expression is reached at the larval to pupal transition, when the larva shortens and hardens its cuticle to acquire a typical barrel shape. Interestingly, both dilp8 and Lgr3 mutants show defective puparium contraction. Recent data show that dilp8 is expressed in the epidermis and received by a population of Lgr3+ neurons different from those involved in growth coordination. Our results indicate that the Dilp8-Lgr3 pathway has multiple conserved roles in insect development which involve parallel neuroendocrine circuits.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219855
Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions; 54th Annual Meeting of the Argentine Society for Biochemistry and Molecular Biology; Paraná; Argentina; 2018; 39-39
1667-5746
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219855
identifier_str_mv Dilp8-Lgr3 pathway: A relaxin-like pathway controlling developmental transitions; 54th Annual Meeting of the Argentine Society for Biochemistry and Molecular Biology; Paraná; Argentina; 2018; 39-39
1667-5746
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sbbmch.cl/wp-content/uploads/2018/10/SAIB_2018.pdf
info:eu-repo/semantics/altIdentifier/url/https://www.techscience.com/biocell/v42nSuppl.4/33869
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Tech Science Press
publisher.none.fl_str_mv Tech Science Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614244526456832
score 13.070432