Time series characterization via horizontal visibility graph and Information Theory
- Autores
- Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Complex networks theory have gained wider applicability since methods for transformation of time series to networks were proposed and successfully tested. In the last few years, horizontal visibility graph has become a popular method due to its simplicity and good results when applied to natural and artificially generated data. In this work, we explore different ways of extracting information from the network constructed from the horizontal visibility graph and evaluated by Information Theory quantifiers. Most works use the degreedistribution of the network, however, we found alternative probability distributions, more efficient than the degree distribution in characterizing dynamical systems. In particular, we find that, when using distributions based on distances and amplitude values, significant shorter time series are required. We analyze fractional Brownian motion time series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dynamical changes during the Holocene.
Fil: Gonçalves, Bruna Amin. Universidade Federal de Minas Gerais; Brasil
Fil: Carpi, Laura. Universidad Politécnica de Catalunya; España
Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ravetti, Martín G.. Universidade Federal de Minas Gerais; Brasil - Materia
-
Time Series Analysis
Complex Networks
Information Theory Quantifiers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46546
Ver los metadatos del registro completo
id |
CONICETDig_6b8d41c611f6224d08c946ae4a904872 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46546 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Time series characterization via horizontal visibility graph and Information TheoryGonçalves, Bruna AminCarpi, LauraRosso, Osvaldo AníbalRavetti, Martín G.Time Series AnalysisComplex NetworksInformation Theory Quantifiershttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Complex networks theory have gained wider applicability since methods for transformation of time series to networks were proposed and successfully tested. In the last few years, horizontal visibility graph has become a popular method due to its simplicity and good results when applied to natural and artificially generated data. In this work, we explore different ways of extracting information from the network constructed from the horizontal visibility graph and evaluated by Information Theory quantifiers. Most works use the degreedistribution of the network, however, we found alternative probability distributions, more efficient than the degree distribution in characterizing dynamical systems. In particular, we find that, when using distributions based on distances and amplitude values, significant shorter time series are required. We analyze fractional Brownian motion time series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dynamical changes during the Holocene.Fil: Gonçalves, Bruna Amin. Universidade Federal de Minas Gerais; BrasilFil: Carpi, Laura. Universidad Politécnica de Catalunya; EspañaFil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ravetti, Martín G.. Universidade Federal de Minas Gerais; BrasilElsevier Science2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46546Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Time series characterization via horizontal visibility graph and Information Theory; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 464; 12-2016; 93-1020378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2016.07.063info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437116304940info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:24Zoai:ri.conicet.gov.ar:11336/46546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:25.262CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Time series characterization via horizontal visibility graph and Information Theory |
title |
Time series characterization via horizontal visibility graph and Information Theory |
spellingShingle |
Time series characterization via horizontal visibility graph and Information Theory Gonçalves, Bruna Amin Time Series Analysis Complex Networks Information Theory Quantifiers |
title_short |
Time series characterization via horizontal visibility graph and Information Theory |
title_full |
Time series characterization via horizontal visibility graph and Information Theory |
title_fullStr |
Time series characterization via horizontal visibility graph and Information Theory |
title_full_unstemmed |
Time series characterization via horizontal visibility graph and Information Theory |
title_sort |
Time series characterization via horizontal visibility graph and Information Theory |
dc.creator.none.fl_str_mv |
Gonçalves, Bruna Amin Carpi, Laura Rosso, Osvaldo Aníbal Ravetti, Martín G. |
author |
Gonçalves, Bruna Amin |
author_facet |
Gonçalves, Bruna Amin Carpi, Laura Rosso, Osvaldo Aníbal Ravetti, Martín G. |
author_role |
author |
author2 |
Carpi, Laura Rosso, Osvaldo Aníbal Ravetti, Martín G. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Time Series Analysis Complex Networks Information Theory Quantifiers |
topic |
Time Series Analysis Complex Networks Information Theory Quantifiers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Complex networks theory have gained wider applicability since methods for transformation of time series to networks were proposed and successfully tested. In the last few years, horizontal visibility graph has become a popular method due to its simplicity and good results when applied to natural and artificially generated data. In this work, we explore different ways of extracting information from the network constructed from the horizontal visibility graph and evaluated by Information Theory quantifiers. Most works use the degreedistribution of the network, however, we found alternative probability distributions, more efficient than the degree distribution in characterizing dynamical systems. In particular, we find that, when using distributions based on distances and amplitude values, significant shorter time series are required. We analyze fractional Brownian motion time series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dynamical changes during the Holocene. Fil: Gonçalves, Bruna Amin. Universidade Federal de Minas Gerais; Brasil Fil: Carpi, Laura. Universidad Politécnica de Catalunya; España Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ravetti, Martín G.. Universidade Federal de Minas Gerais; Brasil |
description |
Complex networks theory have gained wider applicability since methods for transformation of time series to networks were proposed and successfully tested. In the last few years, horizontal visibility graph has become a popular method due to its simplicity and good results when applied to natural and artificially generated data. In this work, we explore different ways of extracting information from the network constructed from the horizontal visibility graph and evaluated by Information Theory quantifiers. Most works use the degreedistribution of the network, however, we found alternative probability distributions, more efficient than the degree distribution in characterizing dynamical systems. In particular, we find that, when using distributions based on distances and amplitude values, significant shorter time series are required. We analyze fractional Brownian motion time series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dynamical changes during the Holocene. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46546 Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Time series characterization via horizontal visibility graph and Information Theory; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 464; 12-2016; 93-102 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46546 |
identifier_str_mv |
Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Time series characterization via horizontal visibility graph and Information Theory; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 464; 12-2016; 93-102 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2016.07.063 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437116304940 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613278760697856 |
score |
13.070432 |