Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
- Autores
- Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban Adolfo; Clark, Charles W.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.
Fil: Rey, Ana Maria. University of Maryland; Estados Unidos
Fil: Hu, B.L.. University of Maryland; Estados Unidos
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Clark, Charles W.. National Institute Of Standards And Technology; Estados Unidos - Materia
- Bose Einstein Condensates
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/73298
Ver los metadatos del registro completo
id |
CONICETDig_d33f91fb5cd6d727db510b3de81b981b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/73298 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum kinetic theory of a Bose-Einstein gas confined in a latticeRey, Ana MariaHu, B.L.Calzetta, Esteban AdolfoClark, Charles W.Bose Einstein Condensateshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.Fil: Rey, Ana Maria. University of Maryland; Estados UnidosFil: Hu, B.L.. University of Maryland; Estados UnidosFil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Clark, Charles W.. National Institute Of Standards And Technology; Estados UnidosAmerican Physical Society2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/73298Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban Adolfo; Clark, Charles W.; Quantum kinetic theory of a Bose-Einstein gas confined in a lattice; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 72; 1; 12-2005; 1-181050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.72.023604info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:00Zoai:ri.conicet.gov.ar:11336/73298instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:00.917CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice |
title |
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice |
spellingShingle |
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice Rey, Ana Maria Bose Einstein Condensates |
title_short |
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice |
title_full |
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice |
title_fullStr |
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice |
title_full_unstemmed |
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice |
title_sort |
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice |
dc.creator.none.fl_str_mv |
Rey, Ana Maria Hu, B.L. Calzetta, Esteban Adolfo Clark, Charles W. |
author |
Rey, Ana Maria |
author_facet |
Rey, Ana Maria Hu, B.L. Calzetta, Esteban Adolfo Clark, Charles W. |
author_role |
author |
author2 |
Hu, B.L. Calzetta, Esteban Adolfo Clark, Charles W. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Bose Einstein Condensates |
topic |
Bose Einstein Condensates |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion. Fil: Rey, Ana Maria. University of Maryland; Estados Unidos Fil: Hu, B.L.. University of Maryland; Estados Unidos Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Clark, Charles W.. National Institute Of Standards And Technology; Estados Unidos |
description |
We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/73298 Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban Adolfo; Clark, Charles W.; Quantum kinetic theory of a Bose-Einstein gas confined in a lattice; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 72; 1; 12-2005; 1-18 1050-2947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/73298 |
identifier_str_mv |
Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban Adolfo; Clark, Charles W.; Quantum kinetic theory of a Bose-Einstein gas confined in a lattice; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 72; 1; 12-2005; 1-18 1050-2947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.72.023604 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613087190056960 |
score |
13.070432 |