Quantum kinetic theory of a Bose-Einstein gas confined in a lattice

Autores
Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban Adolfo; Clark, Charles W.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.
Fil: Rey, Ana Maria. University of Maryland; Estados Unidos
Fil: Hu, B.L.. University of Maryland; Estados Unidos
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Clark, Charles W.. National Institute Of Standards And Technology; Estados Unidos
Materia
Bose Einstein Condensates
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/73298

id CONICETDig_d33f91fb5cd6d727db510b3de81b981b
oai_identifier_str oai:ri.conicet.gov.ar:11336/73298
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum kinetic theory of a Bose-Einstein gas confined in a latticeRey, Ana MariaHu, B.L.Calzetta, Esteban AdolfoClark, Charles W.Bose Einstein Condensateshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.Fil: Rey, Ana Maria. University of Maryland; Estados UnidosFil: Hu, B.L.. University of Maryland; Estados UnidosFil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Clark, Charles W.. National Institute Of Standards And Technology; Estados UnidosAmerican Physical Society2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/73298Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban Adolfo; Clark, Charles W.; Quantum kinetic theory of a Bose-Einstein gas confined in a lattice; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 72; 1; 12-2005; 1-181050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.72.023604info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:00Zoai:ri.conicet.gov.ar:11336/73298instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:00.917CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
title Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
spellingShingle Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
Rey, Ana Maria
Bose Einstein Condensates
title_short Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
title_full Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
title_fullStr Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
title_full_unstemmed Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
title_sort Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
dc.creator.none.fl_str_mv Rey, Ana Maria
Hu, B.L.
Calzetta, Esteban Adolfo
Clark, Charles W.
author Rey, Ana Maria
author_facet Rey, Ana Maria
Hu, B.L.
Calzetta, Esteban Adolfo
Clark, Charles W.
author_role author
author2 Hu, B.L.
Calzetta, Esteban Adolfo
Clark, Charles W.
author2_role author
author
author
dc.subject.none.fl_str_mv Bose Einstein Condensates
topic Bose Einstein Condensates
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.
Fil: Rey, Ana Maria. University of Maryland; Estados Unidos
Fil: Hu, B.L.. University of Maryland; Estados Unidos
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Clark, Charles W.. National Institute Of Standards And Technology; Estados Unidos
description We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/73298
Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban Adolfo; Clark, Charles W.; Quantum kinetic theory of a Bose-Einstein gas confined in a lattice; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 72; 1; 12-2005; 1-18
1050-2947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/73298
identifier_str_mv Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban Adolfo; Clark, Charles W.; Quantum kinetic theory of a Bose-Einstein gas confined in a lattice; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 72; 1; 12-2005; 1-18
1050-2947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.72.023604
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613087190056960
score 13.070432