Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations

Autores
Longone, Pablo Jesus; Ramirez Pastor, Antonio Jose
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Adsorption of multicomponent mixtures on solid substrates is essential to numerous technological processes and provides key insights into surface phenomena. Despite advancements in theoretical modeling, many approaches still assume that each adsorbate occupies a single site, thereby neglecting important effects arising from molecules that span multiple adsorption sites. In this work, we broaden the theoretical description of such systems by considering the adsorption of j distinct polyatomic species on triangular lattices. Our approach is based on (i) exact thermodynamic results for polyatomic gases on one-dimensional lattices, extended here to account for substrates with higher coordination numbers, and (ii) the “0D cavity” functional theory originally developed by Lafuente and Cuesta, which reduces to the well-known Guggenheim–DiMarzio model in the limit of rigid rods. As a case study, we explore the behavior of a three-component system consisting of dimers, linear trimers, and triangular trimers adsorbing onto a triangular lattice. This model captures the interplay between structural simplicity, multisite occupancy, configurational diversity, and competition for space, key factors in many practical scenarios involving size-asymmetric molecules. We characterize the system using total and partial isotherms, energy of adsorption, and configurational entropy of the adsorbed phase. To ensure the reliability of our theoretical predictions, we perform Monte Carlo simulations, which show excellent agreement with the analytical approaches. Our findings demonstrate that even complex adsorption systems can be efficiently described using this generalized framework, offering new insights into multicomponent surface adsorption.
Fil: Longone, Pablo Jesus. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina
Materia
MULTISITIE-OCCUPANCY ADSORPTION
LATTICE GAS-MODELS
STATISTICAL THERMODYNAMICS
MULTICOMPONENT GASES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275149

id CONICETDig_a749effa5078927202254281675bc329
oai_identifier_str oai:ri.conicet.gov.ar:11336/275149
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo SimulationsLongone, Pablo JesusRamirez Pastor, Antonio JoseMULTISITIE-OCCUPANCY ADSORPTIONLATTICE GAS-MODELSSTATISTICAL THERMODYNAMICSMULTICOMPONENT GASEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Adsorption of multicomponent mixtures on solid substrates is essential to numerous technological processes and provides key insights into surface phenomena. Despite advancements in theoretical modeling, many approaches still assume that each adsorbate occupies a single site, thereby neglecting important effects arising from molecules that span multiple adsorption sites. In this work, we broaden the theoretical description of such systems by considering the adsorption of j distinct polyatomic species on triangular lattices. Our approach is based on (i) exact thermodynamic results for polyatomic gases on one-dimensional lattices, extended here to account for substrates with higher coordination numbers, and (ii) the “0D cavity” functional theory originally developed by Lafuente and Cuesta, which reduces to the well-known Guggenheim–DiMarzio model in the limit of rigid rods. As a case study, we explore the behavior of a three-component system consisting of dimers, linear trimers, and triangular trimers adsorbing onto a triangular lattice. This model captures the interplay between structural simplicity, multisite occupancy, configurational diversity, and competition for space, key factors in many practical scenarios involving size-asymmetric molecules. We characterize the system using total and partial isotherms, energy of adsorption, and configurational entropy of the adsorbed phase. To ensure the reliability of our theoretical predictions, we perform Monte Carlo simulations, which show excellent agreement with the analytical approaches. Our findings demonstrate that even complex adsorption systems can be efficiently described using this generalized framework, offering new insights into multicomponent surface adsorption.Fil: Longone, Pablo Jesus. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; ArgentinaMolecular Diversity Preservation International2025-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275149Longone, Pablo Jesus; Ramirez Pastor, Antonio Jose; Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations; Molecular Diversity Preservation International; Entropy; 27; 8; 8-2025; 849-8741099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/8/849info:eu-repo/semantics/altIdentifier/doi/10.3390/e27080849info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T10:01:31Zoai:ri.conicet.gov.ar:11336/275149instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 10:01:31.723CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
title Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
spellingShingle Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
Longone, Pablo Jesus
MULTISITIE-OCCUPANCY ADSORPTION
LATTICE GAS-MODELS
STATISTICAL THERMODYNAMICS
MULTICOMPONENT GASES
title_short Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
title_full Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
title_fullStr Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
title_full_unstemmed Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
title_sort Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
dc.creator.none.fl_str_mv Longone, Pablo Jesus
Ramirez Pastor, Antonio Jose
author Longone, Pablo Jesus
author_facet Longone, Pablo Jesus
Ramirez Pastor, Antonio Jose
author_role author
author2 Ramirez Pastor, Antonio Jose
author2_role author
dc.subject.none.fl_str_mv MULTISITIE-OCCUPANCY ADSORPTION
LATTICE GAS-MODELS
STATISTICAL THERMODYNAMICS
MULTICOMPONENT GASES
topic MULTISITIE-OCCUPANCY ADSORPTION
LATTICE GAS-MODELS
STATISTICAL THERMODYNAMICS
MULTICOMPONENT GASES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Adsorption of multicomponent mixtures on solid substrates is essential to numerous technological processes and provides key insights into surface phenomena. Despite advancements in theoretical modeling, many approaches still assume that each adsorbate occupies a single site, thereby neglecting important effects arising from molecules that span multiple adsorption sites. In this work, we broaden the theoretical description of such systems by considering the adsorption of j distinct polyatomic species on triangular lattices. Our approach is based on (i) exact thermodynamic results for polyatomic gases on one-dimensional lattices, extended here to account for substrates with higher coordination numbers, and (ii) the “0D cavity” functional theory originally developed by Lafuente and Cuesta, which reduces to the well-known Guggenheim–DiMarzio model in the limit of rigid rods. As a case study, we explore the behavior of a three-component system consisting of dimers, linear trimers, and triangular trimers adsorbing onto a triangular lattice. This model captures the interplay between structural simplicity, multisite occupancy, configurational diversity, and competition for space, key factors in many practical scenarios involving size-asymmetric molecules. We characterize the system using total and partial isotherms, energy of adsorption, and configurational entropy of the adsorbed phase. To ensure the reliability of our theoretical predictions, we perform Monte Carlo simulations, which show excellent agreement with the analytical approaches. Our findings demonstrate that even complex adsorption systems can be efficiently described using this generalized framework, offering new insights into multicomponent surface adsorption.
Fil: Longone, Pablo Jesus. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina
description Adsorption of multicomponent mixtures on solid substrates is essential to numerous technological processes and provides key insights into surface phenomena. Despite advancements in theoretical modeling, many approaches still assume that each adsorbate occupies a single site, thereby neglecting important effects arising from molecules that span multiple adsorption sites. In this work, we broaden the theoretical description of such systems by considering the adsorption of j distinct polyatomic species on triangular lattices. Our approach is based on (i) exact thermodynamic results for polyatomic gases on one-dimensional lattices, extended here to account for substrates with higher coordination numbers, and (ii) the “0D cavity” functional theory originally developed by Lafuente and Cuesta, which reduces to the well-known Guggenheim–DiMarzio model in the limit of rigid rods. As a case study, we explore the behavior of a three-component system consisting of dimers, linear trimers, and triangular trimers adsorbing onto a triangular lattice. This model captures the interplay between structural simplicity, multisite occupancy, configurational diversity, and competition for space, key factors in many practical scenarios involving size-asymmetric molecules. We characterize the system using total and partial isotherms, energy of adsorption, and configurational entropy of the adsorbed phase. To ensure the reliability of our theoretical predictions, we perform Monte Carlo simulations, which show excellent agreement with the analytical approaches. Our findings demonstrate that even complex adsorption systems can be efficiently described using this generalized framework, offering new insights into multicomponent surface adsorption.
publishDate 2025
dc.date.none.fl_str_mv 2025-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275149
Longone, Pablo Jesus; Ramirez Pastor, Antonio Jose; Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations; Molecular Diversity Preservation International; Entropy; 27; 8; 8-2025; 849-874
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275149
identifier_str_mv Longone, Pablo Jesus; Ramirez Pastor, Antonio Jose; Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations; Molecular Diversity Preservation International; Entropy; 27; 8; 8-2025; 849-874
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/8/849
info:eu-repo/semantics/altIdentifier/doi/10.3390/e27080849
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1850505999384838144
score 13.275514