Zero-nonzero and real-nonreal sign determination

Autores
Perrucci, Daniel Roberto; Roy, Marie Françoise
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider first the zero–nonzero determination problem, which consists in determining the list of zero–nonzero conditions realized by a finite list of polynomials on a finite set Z⊂Ck with C an algebraic closed field. We describe an algorithm to solve the zero–nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real–nonreal sign determination problem, which deals with both the sign determination and the zero–nonzero determination problem. We describe an algorithm to solve the real–nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context.
Fil: Perrucci, Daniel Roberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina
Fil: Roy, Marie Françoise. Universite de Rennes I. Institut de Recherche Mathematique de Rennes; Francia
Materia
Sign Determination
Algorithm
Complexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15238

id CONICETDig_a6b9147f3115fcd03461d0eea2cb2021
oai_identifier_str oai:ri.conicet.gov.ar:11336/15238
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Zero-nonzero and real-nonreal sign determinationPerrucci, Daniel RobertoRoy, Marie FrançoiseSign DeterminationAlgorithmComplexityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider first the zero–nonzero determination problem, which consists in determining the list of zero–nonzero conditions realized by a finite list of polynomials on a finite set Z⊂Ck with C an algebraic closed field. We describe an algorithm to solve the zero–nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real–nonreal sign determination problem, which deals with both the sign determination and the zero–nonzero determination problem. We describe an algorithm to solve the real–nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context.Fil: Perrucci, Daniel Roberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; ArgentinaFil: Roy, Marie Françoise. Universite de Rennes I. Institut de Recherche Mathematique de Rennes; FranciaElsevier2013-09-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15238Perrucci, Daniel Roberto; Roy, Marie Françoise; Zero-nonzero and real-nonreal sign determination; Elsevier; Linear Algebra And Its Applications; 439; 10; 25-9-2013; 3016-30300024-3795enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002437951300565Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.09.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:56Zoai:ri.conicet.gov.ar:11336/15238instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:57.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Zero-nonzero and real-nonreal sign determination
title Zero-nonzero and real-nonreal sign determination
spellingShingle Zero-nonzero and real-nonreal sign determination
Perrucci, Daniel Roberto
Sign Determination
Algorithm
Complexity
title_short Zero-nonzero and real-nonreal sign determination
title_full Zero-nonzero and real-nonreal sign determination
title_fullStr Zero-nonzero and real-nonreal sign determination
title_full_unstemmed Zero-nonzero and real-nonreal sign determination
title_sort Zero-nonzero and real-nonreal sign determination
dc.creator.none.fl_str_mv Perrucci, Daniel Roberto
Roy, Marie Françoise
author Perrucci, Daniel Roberto
author_facet Perrucci, Daniel Roberto
Roy, Marie Françoise
author_role author
author2 Roy, Marie Françoise
author2_role author
dc.subject.none.fl_str_mv Sign Determination
Algorithm
Complexity
topic Sign Determination
Algorithm
Complexity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider first the zero–nonzero determination problem, which consists in determining the list of zero–nonzero conditions realized by a finite list of polynomials on a finite set Z⊂Ck with C an algebraic closed field. We describe an algorithm to solve the zero–nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real–nonreal sign determination problem, which deals with both the sign determination and the zero–nonzero determination problem. We describe an algorithm to solve the real–nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context.
Fil: Perrucci, Daniel Roberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina
Fil: Roy, Marie Françoise. Universite de Rennes I. Institut de Recherche Mathematique de Rennes; Francia
description We consider first the zero–nonzero determination problem, which consists in determining the list of zero–nonzero conditions realized by a finite list of polynomials on a finite set Z⊂Ck with C an algebraic closed field. We describe an algorithm to solve the zero–nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real–nonreal sign determination problem, which deals with both the sign determination and the zero–nonzero determination problem. We describe an algorithm to solve the real–nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15238
Perrucci, Daniel Roberto; Roy, Marie Françoise; Zero-nonzero and real-nonreal sign determination; Elsevier; Linear Algebra And Its Applications; 439; 10; 25-9-2013; 3016-3030
0024-3795
url http://hdl.handle.net/11336/15238
identifier_str_mv Perrucci, Daniel Roberto; Roy, Marie Françoise; Zero-nonzero and real-nonreal sign determination; Elsevier; Linear Algebra And Its Applications; 439; 10; 25-9-2013; 3016-3030
0024-3795
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002437951300565X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.09.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613047690199040
score 13.070432