Zero-nonzero and real-nonreal sign determination
- Autores
- Perrucci, Daniel Roberto; Roy, Marie Françoise
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider first the zero–nonzero determination problem, which consists in determining the list of zero–nonzero conditions realized by a finite list of polynomials on a finite set Z⊂Ck with C an algebraic closed field. We describe an algorithm to solve the zero–nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real–nonreal sign determination problem, which deals with both the sign determination and the zero–nonzero determination problem. We describe an algorithm to solve the real–nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context.
Fil: Perrucci, Daniel Roberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina
Fil: Roy, Marie Françoise. Universite de Rennes I. Institut de Recherche Mathematique de Rennes; Francia - Materia
-
Sign Determination
Algorithm
Complexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15238
Ver los metadatos del registro completo
id |
CONICETDig_a6b9147f3115fcd03461d0eea2cb2021 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15238 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Zero-nonzero and real-nonreal sign determinationPerrucci, Daniel RobertoRoy, Marie FrançoiseSign DeterminationAlgorithmComplexityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider first the zero–nonzero determination problem, which consists in determining the list of zero–nonzero conditions realized by a finite list of polynomials on a finite set Z⊂Ck with C an algebraic closed field. We describe an algorithm to solve the zero–nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real–nonreal sign determination problem, which deals with both the sign determination and the zero–nonzero determination problem. We describe an algorithm to solve the real–nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context.Fil: Perrucci, Daniel Roberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; ArgentinaFil: Roy, Marie Françoise. Universite de Rennes I. Institut de Recherche Mathematique de Rennes; FranciaElsevier2013-09-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15238Perrucci, Daniel Roberto; Roy, Marie Françoise; Zero-nonzero and real-nonreal sign determination; Elsevier; Linear Algebra And Its Applications; 439; 10; 25-9-2013; 3016-30300024-3795enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002437951300565Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.09.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:56Zoai:ri.conicet.gov.ar:11336/15238instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:57.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Zero-nonzero and real-nonreal sign determination |
title |
Zero-nonzero and real-nonreal sign determination |
spellingShingle |
Zero-nonzero and real-nonreal sign determination Perrucci, Daniel Roberto Sign Determination Algorithm Complexity |
title_short |
Zero-nonzero and real-nonreal sign determination |
title_full |
Zero-nonzero and real-nonreal sign determination |
title_fullStr |
Zero-nonzero and real-nonreal sign determination |
title_full_unstemmed |
Zero-nonzero and real-nonreal sign determination |
title_sort |
Zero-nonzero and real-nonreal sign determination |
dc.creator.none.fl_str_mv |
Perrucci, Daniel Roberto Roy, Marie Françoise |
author |
Perrucci, Daniel Roberto |
author_facet |
Perrucci, Daniel Roberto Roy, Marie Françoise |
author_role |
author |
author2 |
Roy, Marie Françoise |
author2_role |
author |
dc.subject.none.fl_str_mv |
Sign Determination Algorithm Complexity |
topic |
Sign Determination Algorithm Complexity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider first the zero–nonzero determination problem, which consists in determining the list of zero–nonzero conditions realized by a finite list of polynomials on a finite set Z⊂Ck with C an algebraic closed field. We describe an algorithm to solve the zero–nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real–nonreal sign determination problem, which deals with both the sign determination and the zero–nonzero determination problem. We describe an algorithm to solve the real–nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. Fil: Perrucci, Daniel Roberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina Fil: Roy, Marie Françoise. Universite de Rennes I. Institut de Recherche Mathematique de Rennes; Francia |
description |
We consider first the zero–nonzero determination problem, which consists in determining the list of zero–nonzero conditions realized by a finite list of polynomials on a finite set Z⊂Ck with C an algebraic closed field. We describe an algorithm to solve the zero–nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real–nonreal sign determination problem, which deals with both the sign determination and the zero–nonzero determination problem. We describe an algorithm to solve the real–nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15238 Perrucci, Daniel Roberto; Roy, Marie Françoise; Zero-nonzero and real-nonreal sign determination; Elsevier; Linear Algebra And Its Applications; 439; 10; 25-9-2013; 3016-3030 0024-3795 |
url |
http://hdl.handle.net/11336/15238 |
identifier_str_mv |
Perrucci, Daniel Roberto; Roy, Marie Françoise; Zero-nonzero and real-nonreal sign determination; Elsevier; Linear Algebra And Its Applications; 439; 10; 25-9-2013; 3016-3030 0024-3795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002437951300565X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.09.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613047690199040 |
score |
13.070432 |