Zero-nonzero and real-nonreal sign determination
- Autores
- Perrucci, D.; Roy, M.-F.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc.
Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Linear Algebra Its Appl 2013;439(10):3016-3030
- Materia
-
Complexity
Polynomial equations and inequations systems
Sign determination
Bit complexity
Complexity
Finite set
Polynomial equation
Sign determination
Polynomials
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00243795_v439_n10_p3016_Perrucci
Ver los metadatos del registro completo
id |
BDUBAFCEN_31b8b31c5b7bc45dc42f5781d4828e60 |
---|---|
oai_identifier_str |
paperaa:paper_00243795_v439_n10_p3016_Perrucci |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Zero-nonzero and real-nonreal sign determinationPerrucci, D.Roy, M.-F.ComplexityPolynomial equations and inequations systemsSign determinationBit complexityComplexityFinite setPolynomial equationSign determinationPolynomialsAlgorithmsWe consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc.Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_PerrucciLinear Algebra Its Appl 2013;439(10):3016-3030reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_00243795_v439_n10_p3016_PerrucciInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.609Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Zero-nonzero and real-nonreal sign determination |
title |
Zero-nonzero and real-nonreal sign determination |
spellingShingle |
Zero-nonzero and real-nonreal sign determination Perrucci, D. Complexity Polynomial equations and inequations systems Sign determination Bit complexity Complexity Finite set Polynomial equation Sign determination Polynomials Algorithms |
title_short |
Zero-nonzero and real-nonreal sign determination |
title_full |
Zero-nonzero and real-nonreal sign determination |
title_fullStr |
Zero-nonzero and real-nonreal sign determination |
title_full_unstemmed |
Zero-nonzero and real-nonreal sign determination |
title_sort |
Zero-nonzero and real-nonreal sign determination |
dc.creator.none.fl_str_mv |
Perrucci, D. Roy, M.-F. |
author |
Perrucci, D. |
author_facet |
Perrucci, D. Roy, M.-F. |
author_role |
author |
author2 |
Roy, M.-F. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Complexity Polynomial equations and inequations systems Sign determination Bit complexity Complexity Finite set Polynomial equation Sign determination Polynomials Algorithms |
topic |
Complexity Polynomial equations and inequations systems Sign determination Bit complexity Complexity Finite set Polynomial equation Sign determination Polynomials Algorithms |
dc.description.none.fl_txt_mv |
We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_Perrucci |
url |
http://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_Perrucci |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Linear Algebra Its Appl 2013;439(10):3016-3030 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618737230020608 |
score |
12.891075 |