Zero-nonzero and real-nonreal sign determination

Autores
Perrucci, D.; Roy, M.-F.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc.
Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Linear Algebra Its Appl 2013;439(10):3016-3030
Materia
Complexity
Polynomial equations and inequations systems
Sign determination
Bit complexity
Complexity
Finite set
Polynomial equation
Sign determination
Polynomials
Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00243795_v439_n10_p3016_Perrucci

id BDUBAFCEN_31b8b31c5b7bc45dc42f5781d4828e60
oai_identifier_str paperaa:paper_00243795_v439_n10_p3016_Perrucci
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Zero-nonzero and real-nonreal sign determinationPerrucci, D.Roy, M.-F.ComplexityPolynomial equations and inequations systemsSign determinationBit complexityComplexityFinite setPolynomial equationSign determinationPolynomialsAlgorithmsWe consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc.Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_PerrucciLinear Algebra Its Appl 2013;439(10):3016-3030reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_00243795_v439_n10_p3016_PerrucciInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.609Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Zero-nonzero and real-nonreal sign determination
title Zero-nonzero and real-nonreal sign determination
spellingShingle Zero-nonzero and real-nonreal sign determination
Perrucci, D.
Complexity
Polynomial equations and inequations systems
Sign determination
Bit complexity
Complexity
Finite set
Polynomial equation
Sign determination
Polynomials
Algorithms
title_short Zero-nonzero and real-nonreal sign determination
title_full Zero-nonzero and real-nonreal sign determination
title_fullStr Zero-nonzero and real-nonreal sign determination
title_full_unstemmed Zero-nonzero and real-nonreal sign determination
title_sort Zero-nonzero and real-nonreal sign determination
dc.creator.none.fl_str_mv Perrucci, D.
Roy, M.-F.
author Perrucci, D.
author_facet Perrucci, D.
Roy, M.-F.
author_role author
author2 Roy, M.-F.
author2_role author
dc.subject.none.fl_str_mv Complexity
Polynomial equations and inequations systems
Sign determination
Bit complexity
Complexity
Finite set
Polynomial equation
Sign determination
Polynomials
Algorithms
topic Complexity
Polynomial equations and inequations systems
Sign determination
Bit complexity
Complexity
Finite set
Polynomial equation
Sign determination
Polynomials
Algorithms
dc.description.none.fl_txt_mv We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc.
Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_Perrucci
url http://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_Perrucci
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Linear Algebra Its Appl 2013;439(10):3016-3030
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618737230020608
score 12.891075