Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
- Autores
- Rubio López, Adrián E.; Poggi, Pablo Matías; Lombardo, Fernando Cesar; Giannini, Vincenzo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.
Fil: Rubio López, Adrián E.. Institute For Quantum Optics And Quantum Information Of; Austria
Fil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Giannini, Vincenzo. Imperial College. Theoretical Physics Group; Reino Unido. Consejo Superior de Investigaciones Científicas; España - Materia
-
Casimir Effect
Non-equilibrium Casimir physics
Landauer?s formula - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/208133
Ver los metadatos del registro completo
id |
CONICETDig_a64fcd3dc5fd6e81b1b2ee7ad3746b98 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/208133 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forcesRubio López, Adrián E.Poggi, Pablo MatíasLombardo, Fernando CesarGiannini, VincenzoCasimir EffectNon-equilibrium Casimir physicsLandauer?s formulahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.Fil: Rubio López, Adrián E.. Institute For Quantum Optics And Quantum Information Of; AustriaFil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Giannini, Vincenzo. Imperial College. Theoretical Physics Group; Reino Unido. Consejo Superior de Investigaciones Científicas; EspañaAmerican Physical Society2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/208133Rubio López, Adrián E.; Poggi, Pablo Matías; Lombardo, Fernando Cesar; Giannini, Vincenzo; Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 4; 4-2018; 425081-42508161050-29472469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.042508info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.97.042508info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:11Zoai:ri.conicet.gov.ar:11336/208133instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:11.618CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces |
title |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces |
spellingShingle |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces Rubio López, Adrián E. Casimir Effect Non-equilibrium Casimir physics Landauer?s formula |
title_short |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces |
title_full |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces |
title_fullStr |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces |
title_full_unstemmed |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces |
title_sort |
Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces |
dc.creator.none.fl_str_mv |
Rubio López, Adrián E. Poggi, Pablo Matías Lombardo, Fernando Cesar Giannini, Vincenzo |
author |
Rubio López, Adrián E. |
author_facet |
Rubio López, Adrián E. Poggi, Pablo Matías Lombardo, Fernando Cesar Giannini, Vincenzo |
author_role |
author |
author2 |
Poggi, Pablo Matías Lombardo, Fernando Cesar Giannini, Vincenzo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Casimir Effect Non-equilibrium Casimir physics Landauer?s formula |
topic |
Casimir Effect Non-equilibrium Casimir physics Landauer?s formula |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications. Fil: Rubio López, Adrián E.. Institute For Quantum Optics And Quantum Information Of; Austria Fil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Giannini, Vincenzo. Imperial College. Theoretical Physics Group; Reino Unido. Consejo Superior de Investigaciones Científicas; España |
description |
In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/208133 Rubio López, Adrián E.; Poggi, Pablo Matías; Lombardo, Fernando Cesar; Giannini, Vincenzo; Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 4; 4-2018; 425081-4250816 1050-2947 2469-9934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/208133 |
identifier_str_mv |
Rubio López, Adrián E.; Poggi, Pablo Matías; Lombardo, Fernando Cesar; Giannini, Vincenzo; Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 4; 4-2018; 425081-4250816 1050-2947 2469-9934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.042508 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.97.042508 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269389272907776 |
score |
12.885934 |