Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces

Autores
Rubio López, Adrián E.; Poggi, Pablo Matías; Lombardo, Fernando Cesar; Giannini, Vincenzo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.
Fil: Rubio López, Adrián E.. Institute For Quantum Optics And Quantum Information Of; Austria
Fil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Giannini, Vincenzo. Imperial College. Theoretical Physics Group; Reino Unido. Consejo Superior de Investigaciones Científicas; España
Materia
Casimir Effect
Non-equilibrium Casimir physics
Landauer?s formula
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/208133

id CONICETDig_a64fcd3dc5fd6e81b1b2ee7ad3746b98
oai_identifier_str oai:ri.conicet.gov.ar:11336/208133
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forcesRubio López, Adrián E.Poggi, Pablo MatíasLombardo, Fernando CesarGiannini, VincenzoCasimir EffectNon-equilibrium Casimir physicsLandauer?s formulahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.Fil: Rubio López, Adrián E.. Institute For Quantum Optics And Quantum Information Of; AustriaFil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Giannini, Vincenzo. Imperial College. Theoretical Physics Group; Reino Unido. Consejo Superior de Investigaciones Científicas; EspañaAmerican Physical Society2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/208133Rubio López, Adrián E.; Poggi, Pablo Matías; Lombardo, Fernando Cesar; Giannini, Vincenzo; Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 4; 4-2018; 425081-42508161050-29472469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.042508info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.97.042508info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:11Zoai:ri.conicet.gov.ar:11336/208133instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:11.618CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
title Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
spellingShingle Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
Rubio López, Adrián E.
Casimir Effect
Non-equilibrium Casimir physics
Landauer?s formula
title_short Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
title_full Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
title_fullStr Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
title_full_unstemmed Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
title_sort Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
dc.creator.none.fl_str_mv Rubio López, Adrián E.
Poggi, Pablo Matías
Lombardo, Fernando Cesar
Giannini, Vincenzo
author Rubio López, Adrián E.
author_facet Rubio López, Adrián E.
Poggi, Pablo Matías
Lombardo, Fernando Cesar
Giannini, Vincenzo
author_role author
author2 Poggi, Pablo Matías
Lombardo, Fernando Cesar
Giannini, Vincenzo
author2_role author
author
author
dc.subject.none.fl_str_mv Casimir Effect
Non-equilibrium Casimir physics
Landauer?s formula
topic Casimir Effect
Non-equilibrium Casimir physics
Landauer?s formula
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.
Fil: Rubio López, Adrián E.. Institute For Quantum Optics And Quantum Information Of; Austria
Fil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Giannini, Vincenzo. Imperial College. Theoretical Physics Group; Reino Unido. Consejo Superior de Investigaciones Científicas; España
description In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/208133
Rubio López, Adrián E.; Poggi, Pablo Matías; Lombardo, Fernando Cesar; Giannini, Vincenzo; Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 4; 4-2018; 425081-4250816
1050-2947
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/208133
identifier_str_mv Rubio López, Adrián E.; Poggi, Pablo Matías; Lombardo, Fernando Cesar; Giannini, Vincenzo; Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 97; 4; 4-2018; 425081-4250816
1050-2947
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.042508
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.97.042508
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269389272907776
score 12.885934