Neumann Casimir effect: A singular boundary-interaction approach

Autores
Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions. © 2010 Elsevier B.V. All rights reserved.
Fil:Lombardo, F.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys Lett Sect B Nucl Elem Part High-Energy Phys 2010;690(2):189-195
Materia
Boundary conditions
Casimir effect
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_03702693_v690_n2_p189_Fosco

id BDUBAFCEN_dae099206290f10aa66ed0e564b1597e
oai_identifier_str paperaa:paper_03702693_v690_n2_p189_Fosco
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Neumann Casimir effect: A singular boundary-interaction approachFosco, C.D.Lombardo, F.C.Mazzitelli, F.D.Boundary conditionsCasimir effectDirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions. © 2010 Elsevier B.V. All rights reserved.Fil:Lombardo, F.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03702693_v690_n2_p189_FoscoPhys Lett Sect B Nucl Elem Part High-Energy Phys 2010;690(2):189-195reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:23Zpaperaa:paper_03702693_v690_n2_p189_FoscoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:24.285Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Neumann Casimir effect: A singular boundary-interaction approach
title Neumann Casimir effect: A singular boundary-interaction approach
spellingShingle Neumann Casimir effect: A singular boundary-interaction approach
Fosco, C.D.
Boundary conditions
Casimir effect
title_short Neumann Casimir effect: A singular boundary-interaction approach
title_full Neumann Casimir effect: A singular boundary-interaction approach
title_fullStr Neumann Casimir effect: A singular boundary-interaction approach
title_full_unstemmed Neumann Casimir effect: A singular boundary-interaction approach
title_sort Neumann Casimir effect: A singular boundary-interaction approach
dc.creator.none.fl_str_mv Fosco, C.D.
Lombardo, F.C.
Mazzitelli, F.D.
author Fosco, C.D.
author_facet Fosco, C.D.
Lombardo, F.C.
Mazzitelli, F.D.
author_role author
author2 Lombardo, F.C.
Mazzitelli, F.D.
author2_role author
author
dc.subject.none.fl_str_mv Boundary conditions
Casimir effect
topic Boundary conditions
Casimir effect
dc.description.none.fl_txt_mv Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions. © 2010 Elsevier B.V. All rights reserved.
Fil:Lombardo, F.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions. © 2010 Elsevier B.V. All rights reserved.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_03702693_v690_n2_p189_Fosco
url http://hdl.handle.net/20.500.12110/paper_03702693_v690_n2_p189_Fosco
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys Lett Sect B Nucl Elem Part High-Energy Phys 2010;690(2):189-195
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1843608737587134464
score 13.001348