Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system

Autores
Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; López, Adrián E. Rubio; Turiaci, Gustavo J.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we analyze the validity of Lifshitz?s theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz?s framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long- time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths? contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions? contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: López, Adrián E. Rubio. Universidad de Buenos Aires; Argentina
Fil: Turiaci, Gustavo J.. University of Princeton; Estados Unidos
Materia
Casimir Effect
Non-Equilibrium Casimir
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/47897

id CONICETDig_32b9a6b171301a345c375db1d91613a2
oai_identifier_str oai:ri.conicet.gov.ar:11336/47897
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum systemLombardo, Fernando CesarMazzitelli, Francisco DiegoLópez, Adrián E. RubioTuriaci, Gustavo J.Casimir EffectNon-Equilibrium Casimirhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work we analyze the validity of Lifshitz?s theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz?s framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long- time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths? contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions? contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires; ArgentinaFil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: López, Adrián E. Rubio. Universidad de Buenos Aires; ArgentinaFil: Turiaci, Gustavo J.. University of Princeton; Estados UnidosAmerican Physical Society2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47897Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; López, Adrián E. Rubio; Turiaci, Gustavo J.; Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system; American Physical Society; Physical Review D; 94; 7-2016; 250291-25029210556-2821CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.94.025029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:57Zoai:ri.conicet.gov.ar:11336/47897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:58.478CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
title Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
spellingShingle Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
Lombardo, Fernando Cesar
Casimir Effect
Non-Equilibrium Casimir
title_short Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
title_full Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
title_fullStr Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
title_full_unstemmed Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
title_sort Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
dc.creator.none.fl_str_mv Lombardo, Fernando Cesar
Mazzitelli, Francisco Diego
López, Adrián E. Rubio
Turiaci, Gustavo J.
author Lombardo, Fernando Cesar
author_facet Lombardo, Fernando Cesar
Mazzitelli, Francisco Diego
López, Adrián E. Rubio
Turiaci, Gustavo J.
author_role author
author2 Mazzitelli, Francisco Diego
López, Adrián E. Rubio
Turiaci, Gustavo J.
author2_role author
author
author
dc.subject.none.fl_str_mv Casimir Effect
Non-Equilibrium Casimir
topic Casimir Effect
Non-Equilibrium Casimir
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we analyze the validity of Lifshitz?s theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz?s framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long- time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths? contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions? contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: López, Adrián E. Rubio. Universidad de Buenos Aires; Argentina
Fil: Turiaci, Gustavo J.. University of Princeton; Estados Unidos
description In this work we analyze the validity of Lifshitz?s theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz?s framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long- time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths? contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions? contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/47897
Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; López, Adrián E. Rubio; Turiaci, Gustavo J.; Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system; American Physical Society; Physical Review D; 94; 7-2016; 250291-2502921
0556-2821
CONICET Digital
CONICET
url http://hdl.handle.net/11336/47897
identifier_str_mv Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; López, Adrián E. Rubio; Turiaci, Gustavo J.; Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system; American Physical Society; Physical Review D; 94; 7-2016; 250291-2502921
0556-2821
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.94.025029
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981032042692608
score 12.48226