Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system
- Autores
- Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; López, Adrián E. Rubio; Turiaci, Gustavo J.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we analyze the validity of Lifshitz?s theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz?s framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long- time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths? contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions? contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: López, Adrián E. Rubio. Universidad de Buenos Aires; Argentina
Fil: Turiaci, Gustavo J.. University of Princeton; Estados Unidos - Materia
-
Casimir Effect
Non-Equilibrium Casimir - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47897
Ver los metadatos del registro completo
id |
CONICETDig_32b9a6b171301a345c375db1d91613a2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47897 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum systemLombardo, Fernando CesarMazzitelli, Francisco DiegoLópez, Adrián E. RubioTuriaci, Gustavo J.Casimir EffectNon-Equilibrium Casimirhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work we analyze the validity of Lifshitz?s theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz?s framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long- time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths? contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions? contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires; ArgentinaFil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: López, Adrián E. Rubio. Universidad de Buenos Aires; ArgentinaFil: Turiaci, Gustavo J.. University of Princeton; Estados UnidosAmerican Physical Society2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47897Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; López, Adrián E. Rubio; Turiaci, Gustavo J.; Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system; American Physical Society; Physical Review D; 94; 7-2016; 250291-25029210556-2821CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.94.025029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:57Zoai:ri.conicet.gov.ar:11336/47897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:58.478CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system |
title |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system |
spellingShingle |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system Lombardo, Fernando Cesar Casimir Effect Non-Equilibrium Casimir |
title_short |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system |
title_full |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system |
title_fullStr |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system |
title_full_unstemmed |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system |
title_sort |
Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system |
dc.creator.none.fl_str_mv |
Lombardo, Fernando Cesar Mazzitelli, Francisco Diego López, Adrián E. Rubio Turiaci, Gustavo J. |
author |
Lombardo, Fernando Cesar |
author_facet |
Lombardo, Fernando Cesar Mazzitelli, Francisco Diego López, Adrián E. Rubio Turiaci, Gustavo J. |
author_role |
author |
author2 |
Mazzitelli, Francisco Diego López, Adrián E. Rubio Turiaci, Gustavo J. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Casimir Effect Non-Equilibrium Casimir |
topic |
Casimir Effect Non-Equilibrium Casimir |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we analyze the validity of Lifshitz?s theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz?s framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long- time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths? contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions? contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces. Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires; Argentina Fil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: López, Adrián E. Rubio. Universidad de Buenos Aires; Argentina Fil: Turiaci, Gustavo J.. University of Princeton; Estados Unidos |
description |
In this work we analyze the validity of Lifshitz?s theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz?s framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long- time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths? contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions? contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47897 Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; López, Adrián E. Rubio; Turiaci, Gustavo J.; Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system; American Physical Society; Physical Review D; 94; 7-2016; 250291-2502921 0556-2821 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47897 |
identifier_str_mv |
Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; López, Adrián E. Rubio; Turiaci, Gustavo J.; Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system; American Physical Society; Physical Review D; 94; 7-2016; 250291-2502921 0556-2821 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.94.025029 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981032042692608 |
score |
12.48226 |