Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems
- Autores
- Alvarez, Carina Rosa; Alvarez, Roberto; Sarquis, Alejandra
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nitrogen (N) management may be improved by a thorough understanding of the nutrient dynamics during previous-crop residue decomposition and its impact on fertilizer N fate in the soil-plant system. An experiment was conducted in the Argentine Pampas to evaluate the effect of maize and soybean as previouscrops and plow-till and no-till methods on N dynamics and 15N-labeled fertilizer uptake during a wheat growing season. Maize and soybean residues released N under both tillage treatments, but N release was faster from soybean residues and when residues were buried by tillage. Net immobilization of N on decomposing residues was not detected. A regression model that accounted for 92% of remaining N variability included time, previous crop, and tillage treatment as independent variables. The rapid residue decomposition with N release was attributed to the high temperatures of the agroecosystem. The recovery of 15N-labeled fertilizer in the wheat crop, soil organic matter, and decomposing residues was not statistically different between previous crop treatments or tillage systems. Crop uptake of fertilizer N averaged 52% across treatments. Forty percent of fertilizer N was removed in grains. Immobilization of labeled N on soil organic matter was substantial, averaging 34% of the 15N-labeled fertilizer retained, but was very small on decomposing residues, averaging 0.2-3.0%. Fertilizer N not accounted for at harvest in the soil-plant system was 12% and was ascribed to losses. Previous crop or tillage system had no impact on wheat yield, but when soybean was the previous crop, N content of grain and straw+roots increased. Discussion is presented on the potential availability of N retained in wheat straw, roots, and soil organic matter for future crops.
Fil: Alvarez, Carina Rosa. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina
Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina
Fil: Sarquis, Alejandra. Universidad de Buenos Aires. Facultad de Agronomía; Argentina - Materia
-
15N RECOVERY
N FERTILIZATION
RESIDUE DECOMPOSITION
TILLAGE SYSTEMS
WHEAT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/131255
Ver los metadatos del registro completo
id |
CONICETDig_a5cf18792e94bf7a94c730877181ca50 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/131255 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systemsAlvarez, Carina RosaAlvarez, RobertoSarquis, Alejandra15N RECOVERYN FERTILIZATIONRESIDUE DECOMPOSITIONTILLAGE SYSTEMSWHEAThttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Nitrogen (N) management may be improved by a thorough understanding of the nutrient dynamics during previous-crop residue decomposition and its impact on fertilizer N fate in the soil-plant system. An experiment was conducted in the Argentine Pampas to evaluate the effect of maize and soybean as previouscrops and plow-till and no-till methods on N dynamics and 15N-labeled fertilizer uptake during a wheat growing season. Maize and soybean residues released N under both tillage treatments, but N release was faster from soybean residues and when residues were buried by tillage. Net immobilization of N on decomposing residues was not detected. A regression model that accounted for 92% of remaining N variability included time, previous crop, and tillage treatment as independent variables. The rapid residue decomposition with N release was attributed to the high temperatures of the agroecosystem. The recovery of 15N-labeled fertilizer in the wheat crop, soil organic matter, and decomposing residues was not statistically different between previous crop treatments or tillage systems. Crop uptake of fertilizer N averaged 52% across treatments. Forty percent of fertilizer N was removed in grains. Immobilization of labeled N on soil organic matter was substantial, averaging 34% of the 15N-labeled fertilizer retained, but was very small on decomposing residues, averaging 0.2-3.0%. Fertilizer N not accounted for at harvest in the soil-plant system was 12% and was ascribed to losses. Previous crop or tillage system had no impact on wheat yield, but when soybean was the previous crop, N content of grain and straw+roots increased. Discussion is presented on the potential availability of N retained in wheat straw, roots, and soil organic matter for future crops.Fil: Alvarez, Carina Rosa. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaFil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaFil: Sarquis, Alejandra. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaTaylor & Francis2008-02-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/131255Alvarez, Carina Rosa; Alvarez, Roberto; Sarquis, Alejandra; Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems; Taylor & Francis; Communications in Soil Science and Plant Analysis; 39; 3-4; 11-2-2008; 574-5860010-36241532-2416CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00103620701826886info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:17Zoai:ri.conicet.gov.ar:11336/131255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:17.946CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems |
title |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems |
spellingShingle |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems Alvarez, Carina Rosa 15N RECOVERY N FERTILIZATION RESIDUE DECOMPOSITION TILLAGE SYSTEMS WHEAT |
title_short |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems |
title_full |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems |
title_fullStr |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems |
title_full_unstemmed |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems |
title_sort |
Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems |
dc.creator.none.fl_str_mv |
Alvarez, Carina Rosa Alvarez, Roberto Sarquis, Alejandra |
author |
Alvarez, Carina Rosa |
author_facet |
Alvarez, Carina Rosa Alvarez, Roberto Sarquis, Alejandra |
author_role |
author |
author2 |
Alvarez, Roberto Sarquis, Alejandra |
author2_role |
author author |
dc.subject.none.fl_str_mv |
15N RECOVERY N FERTILIZATION RESIDUE DECOMPOSITION TILLAGE SYSTEMS WHEAT |
topic |
15N RECOVERY N FERTILIZATION RESIDUE DECOMPOSITION TILLAGE SYSTEMS WHEAT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Nitrogen (N) management may be improved by a thorough understanding of the nutrient dynamics during previous-crop residue decomposition and its impact on fertilizer N fate in the soil-plant system. An experiment was conducted in the Argentine Pampas to evaluate the effect of maize and soybean as previouscrops and plow-till and no-till methods on N dynamics and 15N-labeled fertilizer uptake during a wheat growing season. Maize and soybean residues released N under both tillage treatments, but N release was faster from soybean residues and when residues were buried by tillage. Net immobilization of N on decomposing residues was not detected. A regression model that accounted for 92% of remaining N variability included time, previous crop, and tillage treatment as independent variables. The rapid residue decomposition with N release was attributed to the high temperatures of the agroecosystem. The recovery of 15N-labeled fertilizer in the wheat crop, soil organic matter, and decomposing residues was not statistically different between previous crop treatments or tillage systems. Crop uptake of fertilizer N averaged 52% across treatments. Forty percent of fertilizer N was removed in grains. Immobilization of labeled N on soil organic matter was substantial, averaging 34% of the 15N-labeled fertilizer retained, but was very small on decomposing residues, averaging 0.2-3.0%. Fertilizer N not accounted for at harvest in the soil-plant system was 12% and was ascribed to losses. Previous crop or tillage system had no impact on wheat yield, but when soybean was the previous crop, N content of grain and straw+roots increased. Discussion is presented on the potential availability of N retained in wheat straw, roots, and soil organic matter for future crops. Fil: Alvarez, Carina Rosa. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina Fil: Sarquis, Alejandra. Universidad de Buenos Aires. Facultad de Agronomía; Argentina |
description |
Nitrogen (N) management may be improved by a thorough understanding of the nutrient dynamics during previous-crop residue decomposition and its impact on fertilizer N fate in the soil-plant system. An experiment was conducted in the Argentine Pampas to evaluate the effect of maize and soybean as previouscrops and plow-till and no-till methods on N dynamics and 15N-labeled fertilizer uptake during a wheat growing season. Maize and soybean residues released N under both tillage treatments, but N release was faster from soybean residues and when residues were buried by tillage. Net immobilization of N on decomposing residues was not detected. A regression model that accounted for 92% of remaining N variability included time, previous crop, and tillage treatment as independent variables. The rapid residue decomposition with N release was attributed to the high temperatures of the agroecosystem. The recovery of 15N-labeled fertilizer in the wheat crop, soil organic matter, and decomposing residues was not statistically different between previous crop treatments or tillage systems. Crop uptake of fertilizer N averaged 52% across treatments. Forty percent of fertilizer N was removed in grains. Immobilization of labeled N on soil organic matter was substantial, averaging 34% of the 15N-labeled fertilizer retained, but was very small on decomposing residues, averaging 0.2-3.0%. Fertilizer N not accounted for at harvest in the soil-plant system was 12% and was ascribed to losses. Previous crop or tillage system had no impact on wheat yield, but when soybean was the previous crop, N content of grain and straw+roots increased. Discussion is presented on the potential availability of N retained in wheat straw, roots, and soil organic matter for future crops. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-02-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/131255 Alvarez, Carina Rosa; Alvarez, Roberto; Sarquis, Alejandra; Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems; Taylor & Francis; Communications in Soil Science and Plant Analysis; 39; 3-4; 11-2-2008; 574-586 0010-3624 1532-2416 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/131255 |
identifier_str_mv |
Alvarez, Carina Rosa; Alvarez, Roberto; Sarquis, Alejandra; Residue decomposition and fate of nitrogen-15 in a wheat crop under different previous crops and tillage systems; Taylor & Francis; Communications in Soil Science and Plant Analysis; 39; 3-4; 11-2-2008; 574-586 0010-3624 1532-2416 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/00103620701826886 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613847020732416 |
score |
13.070432 |