Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application
- Autores
- San Martino, Liliana; Sozzi, Gabriel Oscar; San Martino, Silvina; Lavado, Raul Silvio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Sweet cherry (Prunus avium L.) is a fruit of increasing economic importance though it is less significant than other stone fruit species such as peach. Cherry has received little attention concerning nitrogen (N) uptake and dynamics in mature trees. The aim of this work was to determine N uptake and partitioning as influenced by the timing of fertilizer application in 7-year-old sweet cherry trees cultivated in a cold region (Los Antiguos, Santa Cruz, Argentina; 71°38' W, 46°32' S). Nitrogen (95kgha-1) was applied as ammonium nitrate to a soil with 'Bing' sweet cherry trees grafted onto Prunus mahaleb rootstocks. Fertilization was split into two equal applications per treatment, involving either the commercial fertilizer ammonium nitrate or the same fertilizer labelled with 15N isotope (10% atom.). Treatments consisted of one early spring (full bloom, October 2005) or one summer (late January 2006, 15 days after harvest) application of 15N ammonium nitrate to three replicate trees. Fruit were harvested in early January and leaves were collected at both full canopy and leaf fall. All trees were excavated in winter (August, 2006). Trees were partitioned into their components: trunk, branches (current-season shoots, 1-year-old and over-1-year-old branches), buds of the same age, small roots (less than 1mm thick), large roots, leaves (sampled in February and April), and fruit (collected at harvest). Those components were dried and analysed for total N and 15N content. Total N per tree and N content derived from the fertilizer did not differ between treatments. Summer postharvest 15N application partitioned not only to structural components (trunk and roots) but also to buds and leaves. Uptake efficiency was significantly (p=0.0113) higher in the spring than in the summer application (65.7% vs. 37.44%). Nevertheless, 52.5% of N applied in spring was lost due to harvest and summer pruning. This emphasizes the importance of the postharvest N fertilization which increases N accumulation in both reserve organs and buds though, according to our data, it is less efficiently used. The extent of nitrogen uptake, efficiency of use and partitioning in the following growing seasons are still open questions that deserve further research.
Fil: San Martino, Liliana. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur; Argentina
Fil: Sozzi, Gabriel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina
Fil: San Martino, Silvina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Lavado, Raul Silvio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina - Materia
-
15n Isotope
N Fertilization
Prunus Avium L.
Uptake And Distribution - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61009
Ver los metadatos del registro completo
id |
CONICETDig_714651014f086e45997cef6a8a5d7fb2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61009 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer applicationSan Martino, LilianaSozzi, Gabriel OscarSan Martino, SilvinaLavado, Raul Silvio15n IsotopeN FertilizationPrunus Avium L.Uptake And Distributionhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Sweet cherry (Prunus avium L.) is a fruit of increasing economic importance though it is less significant than other stone fruit species such as peach. Cherry has received little attention concerning nitrogen (N) uptake and dynamics in mature trees. The aim of this work was to determine N uptake and partitioning as influenced by the timing of fertilizer application in 7-year-old sweet cherry trees cultivated in a cold region (Los Antiguos, Santa Cruz, Argentina; 71°38' W, 46°32' S). Nitrogen (95kgha-1) was applied as ammonium nitrate to a soil with 'Bing' sweet cherry trees grafted onto Prunus mahaleb rootstocks. Fertilization was split into two equal applications per treatment, involving either the commercial fertilizer ammonium nitrate or the same fertilizer labelled with 15N isotope (10% atom.). Treatments consisted of one early spring (full bloom, October 2005) or one summer (late January 2006, 15 days after harvest) application of 15N ammonium nitrate to three replicate trees. Fruit were harvested in early January and leaves were collected at both full canopy and leaf fall. All trees were excavated in winter (August, 2006). Trees were partitioned into their components: trunk, branches (current-season shoots, 1-year-old and over-1-year-old branches), buds of the same age, small roots (less than 1mm thick), large roots, leaves (sampled in February and April), and fruit (collected at harvest). Those components were dried and analysed for total N and 15N content. Total N per tree and N content derived from the fertilizer did not differ between treatments. Summer postharvest 15N application partitioned not only to structural components (trunk and roots) but also to buds and leaves. Uptake efficiency was significantly (p=0.0113) higher in the spring than in the summer application (65.7% vs. 37.44%). Nevertheless, 52.5% of N applied in spring was lost due to harvest and summer pruning. This emphasizes the importance of the postharvest N fertilization which increases N accumulation in both reserve organs and buds though, according to our data, it is less efficiently used. The extent of nitrogen uptake, efficiency of use and partitioning in the following growing seasons are still open questions that deserve further research.Fil: San Martino, Liliana. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur; ArgentinaFil: Sozzi, Gabriel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; ArgentinaFil: San Martino, Silvina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Lavado, Raul Silvio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; ArgentinaElsevier Science2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61009San Martino, Liliana; Sozzi, Gabriel Oscar; San Martino, Silvina; Lavado, Raul Silvio; Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application; Elsevier Science; Scientia Horticulturae; 126; 1; 8-2010; 42-490304-4238CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304423810002694info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scienta.2010.06.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:31Zoai:ri.conicet.gov.ar:11336/61009instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:32.129CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application |
title |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application |
spellingShingle |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application San Martino, Liliana 15n Isotope N Fertilization Prunus Avium L. Uptake And Distribution |
title_short |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application |
title_full |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application |
title_fullStr |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application |
title_full_unstemmed |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application |
title_sort |
Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application |
dc.creator.none.fl_str_mv |
San Martino, Liliana Sozzi, Gabriel Oscar San Martino, Silvina Lavado, Raul Silvio |
author |
San Martino, Liliana |
author_facet |
San Martino, Liliana Sozzi, Gabriel Oscar San Martino, Silvina Lavado, Raul Silvio |
author_role |
author |
author2 |
Sozzi, Gabriel Oscar San Martino, Silvina Lavado, Raul Silvio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
15n Isotope N Fertilization Prunus Avium L. Uptake And Distribution |
topic |
15n Isotope N Fertilization Prunus Avium L. Uptake And Distribution |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Sweet cherry (Prunus avium L.) is a fruit of increasing economic importance though it is less significant than other stone fruit species such as peach. Cherry has received little attention concerning nitrogen (N) uptake and dynamics in mature trees. The aim of this work was to determine N uptake and partitioning as influenced by the timing of fertilizer application in 7-year-old sweet cherry trees cultivated in a cold region (Los Antiguos, Santa Cruz, Argentina; 71°38' W, 46°32' S). Nitrogen (95kgha-1) was applied as ammonium nitrate to a soil with 'Bing' sweet cherry trees grafted onto Prunus mahaleb rootstocks. Fertilization was split into two equal applications per treatment, involving either the commercial fertilizer ammonium nitrate or the same fertilizer labelled with 15N isotope (10% atom.). Treatments consisted of one early spring (full bloom, October 2005) or one summer (late January 2006, 15 days after harvest) application of 15N ammonium nitrate to three replicate trees. Fruit were harvested in early January and leaves were collected at both full canopy and leaf fall. All trees were excavated in winter (August, 2006). Trees were partitioned into their components: trunk, branches (current-season shoots, 1-year-old and over-1-year-old branches), buds of the same age, small roots (less than 1mm thick), large roots, leaves (sampled in February and April), and fruit (collected at harvest). Those components were dried and analysed for total N and 15N content. Total N per tree and N content derived from the fertilizer did not differ between treatments. Summer postharvest 15N application partitioned not only to structural components (trunk and roots) but also to buds and leaves. Uptake efficiency was significantly (p=0.0113) higher in the spring than in the summer application (65.7% vs. 37.44%). Nevertheless, 52.5% of N applied in spring was lost due to harvest and summer pruning. This emphasizes the importance of the postharvest N fertilization which increases N accumulation in both reserve organs and buds though, according to our data, it is less efficiently used. The extent of nitrogen uptake, efficiency of use and partitioning in the following growing seasons are still open questions that deserve further research. Fil: San Martino, Liliana. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur; Argentina Fil: Sozzi, Gabriel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina Fil: San Martino, Silvina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Lavado, Raul Silvio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina |
description |
Sweet cherry (Prunus avium L.) is a fruit of increasing economic importance though it is less significant than other stone fruit species such as peach. Cherry has received little attention concerning nitrogen (N) uptake and dynamics in mature trees. The aim of this work was to determine N uptake and partitioning as influenced by the timing of fertilizer application in 7-year-old sweet cherry trees cultivated in a cold region (Los Antiguos, Santa Cruz, Argentina; 71°38' W, 46°32' S). Nitrogen (95kgha-1) was applied as ammonium nitrate to a soil with 'Bing' sweet cherry trees grafted onto Prunus mahaleb rootstocks. Fertilization was split into two equal applications per treatment, involving either the commercial fertilizer ammonium nitrate or the same fertilizer labelled with 15N isotope (10% atom.). Treatments consisted of one early spring (full bloom, October 2005) or one summer (late January 2006, 15 days after harvest) application of 15N ammonium nitrate to three replicate trees. Fruit were harvested in early January and leaves were collected at both full canopy and leaf fall. All trees were excavated in winter (August, 2006). Trees were partitioned into their components: trunk, branches (current-season shoots, 1-year-old and over-1-year-old branches), buds of the same age, small roots (less than 1mm thick), large roots, leaves (sampled in February and April), and fruit (collected at harvest). Those components were dried and analysed for total N and 15N content. Total N per tree and N content derived from the fertilizer did not differ between treatments. Summer postharvest 15N application partitioned not only to structural components (trunk and roots) but also to buds and leaves. Uptake efficiency was significantly (p=0.0113) higher in the spring than in the summer application (65.7% vs. 37.44%). Nevertheless, 52.5% of N applied in spring was lost due to harvest and summer pruning. This emphasizes the importance of the postharvest N fertilization which increases N accumulation in both reserve organs and buds though, according to our data, it is less efficiently used. The extent of nitrogen uptake, efficiency of use and partitioning in the following growing seasons are still open questions that deserve further research. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61009 San Martino, Liliana; Sozzi, Gabriel Oscar; San Martino, Silvina; Lavado, Raul Silvio; Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application; Elsevier Science; Scientia Horticulturae; 126; 1; 8-2010; 42-49 0304-4238 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61009 |
identifier_str_mv |
San Martino, Liliana; Sozzi, Gabriel Oscar; San Martino, Silvina; Lavado, Raul Silvio; Isotopically-labelled nitrogen uptake and partitioning in sweet cherry as influenced by timing of fertilizer application; Elsevier Science; Scientia Horticulturae; 126; 1; 8-2010; 42-49 0304-4238 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304423810002694 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scienta.2010.06.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613068737216512 |
score |
13.070432 |