A stronger reformulation of Webb's conjecture in terms of finite topological spaces

Autores
Piterman, Kevin
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces.
Fil: Piterman, Kevin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
FINITE TOPOLOGICAL SPACES
FUSION
ORBIT SPACES
P-SUBGROUPS
POSETS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/116940

id CONICETDig_a59d17dffbedc0c6e0c62599a08ca4e0
oai_identifier_str oai:ri.conicet.gov.ar:11336/116940
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A stronger reformulation of Webb's conjecture in terms of finite topological spacesPiterman, KevinFINITE TOPOLOGICAL SPACESFUSIONORBIT SPACESP-SUBGROUPSPOSETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces.Fil: Piterman, Kevin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116940Piterman, Kevin; A stronger reformulation of Webb's conjecture in terms of finite topological spaces; Academic Press Inc Elsevier Science; Journal of Algebra; 527; 6-2019; 280-3050021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2019.02.037info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869319301401info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:42Zoai:ri.conicet.gov.ar:11336/116940instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:43.289CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A stronger reformulation of Webb's conjecture in terms of finite topological spaces
title A stronger reformulation of Webb's conjecture in terms of finite topological spaces
spellingShingle A stronger reformulation of Webb's conjecture in terms of finite topological spaces
Piterman, Kevin
FINITE TOPOLOGICAL SPACES
FUSION
ORBIT SPACES
P-SUBGROUPS
POSETS
title_short A stronger reformulation of Webb's conjecture in terms of finite topological spaces
title_full A stronger reformulation of Webb's conjecture in terms of finite topological spaces
title_fullStr A stronger reformulation of Webb's conjecture in terms of finite topological spaces
title_full_unstemmed A stronger reformulation of Webb's conjecture in terms of finite topological spaces
title_sort A stronger reformulation of Webb's conjecture in terms of finite topological spaces
dc.creator.none.fl_str_mv Piterman, Kevin
author Piterman, Kevin
author_facet Piterman, Kevin
author_role author
dc.subject.none.fl_str_mv FINITE TOPOLOGICAL SPACES
FUSION
ORBIT SPACES
P-SUBGROUPS
POSETS
topic FINITE TOPOLOGICAL SPACES
FUSION
ORBIT SPACES
P-SUBGROUPS
POSETS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces.
Fil: Piterman, Kevin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces.
publishDate 2019
dc.date.none.fl_str_mv 2019-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/116940
Piterman, Kevin; A stronger reformulation of Webb's conjecture in terms of finite topological spaces; Academic Press Inc Elsevier Science; Journal of Algebra; 527; 6-2019; 280-305
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/116940
identifier_str_mv Piterman, Kevin; A stronger reformulation of Webb's conjecture in terms of finite topological spaces; Academic Press Inc Elsevier Science; Journal of Algebra; 527; 6-2019; 280-305
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2019.02.037
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869319301401
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269597051387904
score 13.13397