A stronger reformulation of Webb's conjecture in terms of finite topological spaces
- Autores
- Piterman, Kevin
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces.
Fil: Piterman, Kevin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
FINITE TOPOLOGICAL SPACES
FUSION
ORBIT SPACES
P-SUBGROUPS
POSETS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/116940
Ver los metadatos del registro completo
id |
CONICETDig_a59d17dffbedc0c6e0c62599a08ca4e0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/116940 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A stronger reformulation of Webb's conjecture in terms of finite topological spacesPiterman, KevinFINITE TOPOLOGICAL SPACESFUSIONORBIT SPACESP-SUBGROUPSPOSETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces.Fil: Piterman, Kevin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116940Piterman, Kevin; A stronger reformulation of Webb's conjecture in terms of finite topological spaces; Academic Press Inc Elsevier Science; Journal of Algebra; 527; 6-2019; 280-3050021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2019.02.037info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869319301401info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:42Zoai:ri.conicet.gov.ar:11336/116940instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:43.289CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A stronger reformulation of Webb's conjecture in terms of finite topological spaces |
title |
A stronger reformulation of Webb's conjecture in terms of finite topological spaces |
spellingShingle |
A stronger reformulation of Webb's conjecture in terms of finite topological spaces Piterman, Kevin FINITE TOPOLOGICAL SPACES FUSION ORBIT SPACES P-SUBGROUPS POSETS |
title_short |
A stronger reformulation of Webb's conjecture in terms of finite topological spaces |
title_full |
A stronger reformulation of Webb's conjecture in terms of finite topological spaces |
title_fullStr |
A stronger reformulation of Webb's conjecture in terms of finite topological spaces |
title_full_unstemmed |
A stronger reformulation of Webb's conjecture in terms of finite topological spaces |
title_sort |
A stronger reformulation of Webb's conjecture in terms of finite topological spaces |
dc.creator.none.fl_str_mv |
Piterman, Kevin |
author |
Piterman, Kevin |
author_facet |
Piterman, Kevin |
author_role |
author |
dc.subject.none.fl_str_mv |
FINITE TOPOLOGICAL SPACES FUSION ORBIT SPACES P-SUBGROUPS POSETS |
topic |
FINITE TOPOLOGICAL SPACES FUSION ORBIT SPACES P-SUBGROUPS POSETS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces. Fil: Piterman, Kevin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/116940 Piterman, Kevin; A stronger reformulation of Webb's conjecture in terms of finite topological spaces; Academic Press Inc Elsevier Science; Journal of Algebra; 527; 6-2019; 280-305 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/116940 |
identifier_str_mv |
Piterman, Kevin; A stronger reformulation of Webb's conjecture in terms of finite topological spaces; Academic Press Inc Elsevier Science; Journal of Algebra; 527; 6-2019; 280-305 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2019.02.037 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869319301401 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269597051387904 |
score |
13.13397 |