Some remarks on Morse theory for posets, homological Morse theory and finite manifolds

Autores
Minian, Elias Gabriel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman’s discrete Morse theory for CW-complexes and generalizes Forman and Chari’s results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations.
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Morse Theory
Finite Spaces
Posets
Homology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19957

id CONICETDig_6a2fed750acf3dc3b83ed56c6586de88
oai_identifier_str oai:ri.conicet.gov.ar:11336/19957
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some remarks on Morse theory for posets, homological Morse theory and finite manifoldsMinian, Elias GabrielMorse TheoryFinite SpacesPosetsHomologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman’s discrete Morse theory for CW-complexes and generalizes Forman and Chari’s results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations.Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19957Minian, Elias Gabriel; Some remarks on Morse theory for posets, homological Morse theory and finite manifolds; Elsevier Science; Topology And Its Applications; 159; 12; 8-2012; 2860-28690166-8641CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.topol.2012.05.027info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166864112002374info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.1930info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:17Zoai:ri.conicet.gov.ar:11336/19957instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:18.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
title Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
spellingShingle Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
Minian, Elias Gabriel
Morse Theory
Finite Spaces
Posets
Homology
title_short Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
title_full Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
title_fullStr Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
title_full_unstemmed Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
title_sort Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
dc.creator.none.fl_str_mv Minian, Elias Gabriel
author Minian, Elias Gabriel
author_facet Minian, Elias Gabriel
author_role author
dc.subject.none.fl_str_mv Morse Theory
Finite Spaces
Posets
Homology
topic Morse Theory
Finite Spaces
Posets
Homology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman’s discrete Morse theory for CW-complexes and generalizes Forman and Chari’s results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations.
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman’s discrete Morse theory for CW-complexes and generalizes Forman and Chari’s results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations.
publishDate 2012
dc.date.none.fl_str_mv 2012-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19957
Minian, Elias Gabriel; Some remarks on Morse theory for posets, homological Morse theory and finite manifolds; Elsevier Science; Topology And Its Applications; 159; 12; 8-2012; 2860-2869
0166-8641
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19957
identifier_str_mv Minian, Elias Gabriel; Some remarks on Morse theory for posets, homological Morse theory and finite manifolds; Elsevier Science; Topology And Its Applications; 159; 12; 8-2012; 2860-2869
0166-8641
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.topol.2012.05.027
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166864112002374
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.1930
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082795607162880
score 13.22299