Some remarks on Morse theory for posets, homological Morse theory and finite manifolds
- Autores
- Minian, Elias Gabriel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman’s discrete Morse theory for CW-complexes and generalizes Forman and Chari’s results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations.
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Morse Theory
Finite Spaces
Posets
Homology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19957
Ver los metadatos del registro completo
id |
CONICETDig_6a2fed750acf3dc3b83ed56c6586de88 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19957 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Some remarks on Morse theory for posets, homological Morse theory and finite manifoldsMinian, Elias GabrielMorse TheoryFinite SpacesPosetsHomologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman’s discrete Morse theory for CW-complexes and generalizes Forman and Chari’s results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations.Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19957Minian, Elias Gabriel; Some remarks on Morse theory for posets, homological Morse theory and finite manifolds; Elsevier Science; Topology And Its Applications; 159; 12; 8-2012; 2860-28690166-8641CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.topol.2012.05.027info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166864112002374info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.1930info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:17Zoai:ri.conicet.gov.ar:11336/19957instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:18.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Some remarks on Morse theory for posets, homological Morse theory and finite manifolds |
title |
Some remarks on Morse theory for posets, homological Morse theory and finite manifolds |
spellingShingle |
Some remarks on Morse theory for posets, homological Morse theory and finite manifolds Minian, Elias Gabriel Morse Theory Finite Spaces Posets Homology |
title_short |
Some remarks on Morse theory for posets, homological Morse theory and finite manifolds |
title_full |
Some remarks on Morse theory for posets, homological Morse theory and finite manifolds |
title_fullStr |
Some remarks on Morse theory for posets, homological Morse theory and finite manifolds |
title_full_unstemmed |
Some remarks on Morse theory for posets, homological Morse theory and finite manifolds |
title_sort |
Some remarks on Morse theory for posets, homological Morse theory and finite manifolds |
dc.creator.none.fl_str_mv |
Minian, Elias Gabriel |
author |
Minian, Elias Gabriel |
author_facet |
Minian, Elias Gabriel |
author_role |
author |
dc.subject.none.fl_str_mv |
Morse Theory Finite Spaces Posets Homology |
topic |
Morse Theory Finite Spaces Posets Homology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman’s discrete Morse theory for CW-complexes and generalizes Forman and Chari’s results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations. Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We introduce a version of discrete Morse theory for posets. This theory studies the topology of the order complexes K(X) of h-regular posets X from the critical points of admissible matchings on X. Our approach is related to R. Forman’s discrete Morse theory for CW-complexes and generalizes Forman and Chari’s results on the face posets of regular CW-complexes. We also introduce a homological variant of the theory that can be used to study the topology of triangulable homology manifolds by means of their order triangulations. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19957 Minian, Elias Gabriel; Some remarks on Morse theory for posets, homological Morse theory and finite manifolds; Elsevier Science; Topology And Its Applications; 159; 12; 8-2012; 2860-2869 0166-8641 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19957 |
identifier_str_mv |
Minian, Elias Gabriel; Some remarks on Morse theory for posets, homological Morse theory and finite manifolds; Elsevier Science; Topology And Its Applications; 159; 12; 8-2012; 2860-2869 0166-8641 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.topol.2012.05.027 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166864112002374 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.1930 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082795607162880 |
score |
13.22299 |