Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth

Autores
Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals.
Fil: Da Silva, Joao Vitor. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Vivas, Hernán Agustín. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Materia
ALMOST MINIMIZERS
LIPSCHITZ REGULARITY
ORLICZ SPACES
BERNOULLI PROBLEM
CAMPANATO REGULARITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/237553

id CONICETDig_a53e2b106c8b7c73f66fcd512a622f33
oai_identifier_str oai:ri.conicet.gov.ar:11336/237553
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growthDa Silva, Joao VitorSilva, AnaliaVivas, Hernán AgustínALMOST MINIMIZERSLIPSCHITZ REGULARITYORLICZ SPACESBERNOULLI PROBLEMCAMPANATO REGULARITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals.Fil: Da Silva, Joao Vitor. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Vivas, Hernán Agustín. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaAmerican Institute of Mathematical Sciences2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/237553Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín; Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 44; 6; 6-2024; 1555-15861078-0947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2024001info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/dcds.2024001info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2311.14207info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:44Zoai:ri.conicet.gov.ar:11336/237553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:45.178CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
title Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
spellingShingle Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
Da Silva, Joao Vitor
ALMOST MINIMIZERS
LIPSCHITZ REGULARITY
ORLICZ SPACES
BERNOULLI PROBLEM
CAMPANATO REGULARITY
title_short Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
title_full Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
title_fullStr Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
title_full_unstemmed Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
title_sort Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
dc.creator.none.fl_str_mv Da Silva, Joao Vitor
Silva, Analia
Vivas, Hernán Agustín
author Da Silva, Joao Vitor
author_facet Da Silva, Joao Vitor
Silva, Analia
Vivas, Hernán Agustín
author_role author
author2 Silva, Analia
Vivas, Hernán Agustín
author2_role author
author
dc.subject.none.fl_str_mv ALMOST MINIMIZERS
LIPSCHITZ REGULARITY
ORLICZ SPACES
BERNOULLI PROBLEM
CAMPANATO REGULARITY
topic ALMOST MINIMIZERS
LIPSCHITZ REGULARITY
ORLICZ SPACES
BERNOULLI PROBLEM
CAMPANATO REGULARITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals.
Fil: Da Silva, Joao Vitor. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Vivas, Hernán Agustín. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
description In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/237553
Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín; Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 44; 6; 6-2024; 1555-1586
1078-0947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/237553
identifier_str_mv Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín; Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 44; 6; 6-2024; 1555-1586
1078-0947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2024001
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/dcds.2024001
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2311.14207
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences
publisher.none.fl_str_mv American Institute of Mathematical Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979970045968384
score 12.993085