Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
- Autores
- Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals.
Fil: Da Silva, Joao Vitor. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Vivas, Hernán Agustín. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina - Materia
-
ALMOST MINIMIZERS
LIPSCHITZ REGULARITY
ORLICZ SPACES
BERNOULLI PROBLEM
CAMPANATO REGULARITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/237553
Ver los metadatos del registro completo
id |
CONICETDig_a53e2b106c8b7c73f66fcd512a622f33 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/237553 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growthDa Silva, Joao VitorSilva, AnaliaVivas, Hernán AgustínALMOST MINIMIZERSLIPSCHITZ REGULARITYORLICZ SPACESBERNOULLI PROBLEMCAMPANATO REGULARITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals.Fil: Da Silva, Joao Vitor. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Vivas, Hernán Agustín. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaAmerican Institute of Mathematical Sciences2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/237553Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín; Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 44; 6; 6-2024; 1555-15861078-0947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2024001info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/dcds.2024001info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2311.14207info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:44Zoai:ri.conicet.gov.ar:11336/237553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:45.178CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth |
title |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth |
spellingShingle |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth Da Silva, Joao Vitor ALMOST MINIMIZERS LIPSCHITZ REGULARITY ORLICZ SPACES BERNOULLI PROBLEM CAMPANATO REGULARITY |
title_short |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth |
title_full |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth |
title_fullStr |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth |
title_full_unstemmed |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth |
title_sort |
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth |
dc.creator.none.fl_str_mv |
Da Silva, Joao Vitor Silva, Analia Vivas, Hernán Agustín |
author |
Da Silva, Joao Vitor |
author_facet |
Da Silva, Joao Vitor Silva, Analia Vivas, Hernán Agustín |
author_role |
author |
author2 |
Silva, Analia Vivas, Hernán Agustín |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ALMOST MINIMIZERS LIPSCHITZ REGULARITY ORLICZ SPACES BERNOULLI PROBLEM CAMPANATO REGULARITY |
topic |
ALMOST MINIMIZERS LIPSCHITZ REGULARITY ORLICZ SPACES BERNOULLI PROBLEM CAMPANATO REGULARITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals. Fil: Da Silva, Joao Vitor. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Vivas, Hernán Agustín. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Centro Marplatense de Investigaciones Matematicas.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina |
description |
In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/237553 Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín; Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 44; 6; 6-2024; 1555-1586 1078-0947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/237553 |
identifier_str_mv |
Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín; Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 44; 6; 6-2024; 1555-1586 1078-0947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2024001 info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/dcds.2024001 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2311.14207 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979970045968384 |
score |
12.993085 |