Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response
- Autores
- Goldstein, Ido; Baek, Songjoon; Presman, Diego Martin; Paakinaho, Ville; Swinstead, Erin E.; Hager, Gordon L.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting.
Fil: Goldstein, Ido. National Cancer Institute; Estados Unidos
Fil: Baek, Songjoon. National Cancer Institute; Estados Unidos
Fil: Presman, Diego Martin. National Cancer Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Paakinaho, Ville. National Cancer Institute; Estados Unidos
Fil: Swinstead, Erin E.. National Cancer Institute; Estados Unidos
Fil: Hager, Gordon L.. National Cancer Institute; Estados Unidos - Materia
-
DYNAMIC ASSISTED LOADING
FASTING
LIVER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/65685
Ver los metadatos del registro completo
id |
CONICETDig_a4ce1fe4f48f943f56c9ea8379fec0be |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/65685 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting responseGoldstein, IdoBaek, SongjoonPresman, Diego MartinPaakinaho, VilleSwinstead, Erin E.Hager, Gordon L.DYNAMIC ASSISTED LOADINGFASTINGLIVERhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting.Fil: Goldstein, Ido. National Cancer Institute; Estados UnidosFil: Baek, Songjoon. National Cancer Institute; Estados UnidosFil: Presman, Diego Martin. National Cancer Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Paakinaho, Ville. National Cancer Institute; Estados UnidosFil: Swinstead, Erin E.. National Cancer Institute; Estados UnidosFil: Hager, Gordon L.. National Cancer Institute; Estados UnidosCold Spring Harbor Laboratory Press2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65685Goldstein, Ido; Baek, Songjoon; Presman, Diego Martin; Paakinaho, Ville; Swinstead, Erin E.; et al.; Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response; Cold Spring Harbor Laboratory Press; Genome Research; 27; 3; 3-2017; 427-4391088-9051CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1101/gr.212175.116info:eu-repo/semantics/altIdentifier/url/https://genome.cshlp.org/content/27/3/427info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:58Zoai:ri.conicet.gov.ar:11336/65685instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:59.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response |
title |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response |
spellingShingle |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response Goldstein, Ido DYNAMIC ASSISTED LOADING FASTING LIVER |
title_short |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response |
title_full |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response |
title_fullStr |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response |
title_full_unstemmed |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response |
title_sort |
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response |
dc.creator.none.fl_str_mv |
Goldstein, Ido Baek, Songjoon Presman, Diego Martin Paakinaho, Ville Swinstead, Erin E. Hager, Gordon L. |
author |
Goldstein, Ido |
author_facet |
Goldstein, Ido Baek, Songjoon Presman, Diego Martin Paakinaho, Ville Swinstead, Erin E. Hager, Gordon L. |
author_role |
author |
author2 |
Baek, Songjoon Presman, Diego Martin Paakinaho, Ville Swinstead, Erin E. Hager, Gordon L. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
DYNAMIC ASSISTED LOADING FASTING LIVER |
topic |
DYNAMIC ASSISTED LOADING FASTING LIVER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. Fil: Goldstein, Ido. National Cancer Institute; Estados Unidos Fil: Baek, Songjoon. National Cancer Institute; Estados Unidos Fil: Presman, Diego Martin. National Cancer Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Paakinaho, Ville. National Cancer Institute; Estados Unidos Fil: Swinstead, Erin E.. National Cancer Institute; Estados Unidos Fil: Hager, Gordon L.. National Cancer Institute; Estados Unidos |
description |
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/65685 Goldstein, Ido; Baek, Songjoon; Presman, Diego Martin; Paakinaho, Ville; Swinstead, Erin E.; et al.; Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response; Cold Spring Harbor Laboratory Press; Genome Research; 27; 3; 3-2017; 427-439 1088-9051 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/65685 |
identifier_str_mv |
Goldstein, Ido; Baek, Songjoon; Presman, Diego Martin; Paakinaho, Ville; Swinstead, Erin E.; et al.; Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response; Cold Spring Harbor Laboratory Press; Genome Research; 27; 3; 3-2017; 427-439 1088-9051 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1101/gr.212175.116 info:eu-repo/semantics/altIdentifier/url/https://genome.cshlp.org/content/27/3/427 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cold Spring Harbor Laboratory Press |
publisher.none.fl_str_mv |
Cold Spring Harbor Laboratory Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269830276710400 |
score |
13.13397 |