Differential geometry, Palatini gravity and reduction

Autores
Capriotti, Santiago
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincare reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.
Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Exterior differential systems
variational problems
Euler-Poincaré reduction
tetrad gravity
connection bundle
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12394

id CONICETDig_a3f511cbc69b85fe531011317b6a0376
oai_identifier_str oai:ri.conicet.gov.ar:11336/12394
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Differential geometry, Palatini gravity and reductionCapriotti, SantiagoExterior differential systemsvariational problemsEuler-Poincaré reductiontetrad gravityconnection bundlehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincare reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Institute Of Physics2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12394Capriotti, Santiago; Differential geometry, Palatini gravity and reduction; American Institute Of Physics; Journal Of Mathematical Physics; 55; 1; 1-2014; 1-290022-2488enginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4862855info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4862855info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:36Zoai:ri.conicet.gov.ar:11336/12394instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:36.937CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Differential geometry, Palatini gravity and reduction
title Differential geometry, Palatini gravity and reduction
spellingShingle Differential geometry, Palatini gravity and reduction
Capriotti, Santiago
Exterior differential systems
variational problems
Euler-Poincaré reduction
tetrad gravity
connection bundle
title_short Differential geometry, Palatini gravity and reduction
title_full Differential geometry, Palatini gravity and reduction
title_fullStr Differential geometry, Palatini gravity and reduction
title_full_unstemmed Differential geometry, Palatini gravity and reduction
title_sort Differential geometry, Palatini gravity and reduction
dc.creator.none.fl_str_mv Capriotti, Santiago
author Capriotti, Santiago
author_facet Capriotti, Santiago
author_role author
dc.subject.none.fl_str_mv Exterior differential systems
variational problems
Euler-Poincaré reduction
tetrad gravity
connection bundle
topic Exterior differential systems
variational problems
Euler-Poincaré reduction
tetrad gravity
connection bundle
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincare reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.
Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincare reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12394
Capriotti, Santiago; Differential geometry, Palatini gravity and reduction; American Institute Of Physics; Journal Of Mathematical Physics; 55; 1; 1-2014; 1-29
0022-2488
url http://hdl.handle.net/11336/12394
identifier_str_mv Capriotti, Santiago; Differential geometry, Palatini gravity and reduction; American Institute Of Physics; Journal Of Mathematical Physics; 55; 1; 1-2014; 1-29
0022-2488
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4862855
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4862855
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute Of Physics
publisher.none.fl_str_mv American Institute Of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270052034805760
score 13.13397