Differential geometry, Palatini gravity and reduction
- Autores
- Capriotti, Santiago
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincare reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.
Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Exterior differential systems
variational problems
Euler-Poincaré reduction
tetrad gravity
connection bundle - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12394
Ver los metadatos del registro completo
id |
CONICETDig_a3f511cbc69b85fe531011317b6a0376 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12394 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Differential geometry, Palatini gravity and reductionCapriotti, SantiagoExterior differential systemsvariational problemsEuler-Poincaré reductiontetrad gravityconnection bundlehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincare reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Institute Of Physics2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12394Capriotti, Santiago; Differential geometry, Palatini gravity and reduction; American Institute Of Physics; Journal Of Mathematical Physics; 55; 1; 1-2014; 1-290022-2488enginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4862855info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4862855info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:36Zoai:ri.conicet.gov.ar:11336/12394instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:36.937CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Differential geometry, Palatini gravity and reduction |
title |
Differential geometry, Palatini gravity and reduction |
spellingShingle |
Differential geometry, Palatini gravity and reduction Capriotti, Santiago Exterior differential systems variational problems Euler-Poincaré reduction tetrad gravity connection bundle |
title_short |
Differential geometry, Palatini gravity and reduction |
title_full |
Differential geometry, Palatini gravity and reduction |
title_fullStr |
Differential geometry, Palatini gravity and reduction |
title_full_unstemmed |
Differential geometry, Palatini gravity and reduction |
title_sort |
Differential geometry, Palatini gravity and reduction |
dc.creator.none.fl_str_mv |
Capriotti, Santiago |
author |
Capriotti, Santiago |
author_facet |
Capriotti, Santiago |
author_role |
author |
dc.subject.none.fl_str_mv |
Exterior differential systems variational problems Euler-Poincaré reduction tetrad gravity connection bundle |
topic |
Exterior differential systems variational problems Euler-Poincaré reduction tetrad gravity connection bundle |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincare reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed. Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincare reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12394 Capriotti, Santiago; Differential geometry, Palatini gravity and reduction; American Institute Of Physics; Journal Of Mathematical Physics; 55; 1; 1-2014; 1-29 0022-2488 |
url |
http://hdl.handle.net/11336/12394 |
identifier_str_mv |
Capriotti, Santiago; Differential geometry, Palatini gravity and reduction; American Institute Of Physics; Journal Of Mathematical Physics; 55; 1; 1-2014; 1-29 0022-2488 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4862855 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4862855 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute Of Physics |
publisher.none.fl_str_mv |
American Institute Of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270052034805760 |
score |
13.13397 |