Unified formalism for Palatini gravity
- Autores
- Capriotti, Santiago
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper is devoted to the construction of a unified formalism for Palatini and unimodular gravity. The idea is to employ a relationship between unified formalism for a Griffiths variational problem and its classical Lepage-equivalent variational problem. The main geometrical tools involved in these constructions are canonical forms living on the first jet of the frame bundle for the spacetime manifold. These forms play an essential role in providing a global version of the Palatini Lagrangian and expressing the metricity condition in an invariant form. With them, we were able to find the associated equations of motion in invariant terms and, by using previous results from the literature, to prove their involutivity. As a bonus, we showed how this construction can be used to provide a unified formalism for the so-called unimodular gravity by employing a reduction of the structure group of the frame bundle to the special linear group.
Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina - Materia
-
VARIATIONAL PROBLEMS
UNIFIED FORMALISM
PALATINI GRAVITY
UNIMODULAR GRAVITY
CONNECTION BUNDLE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43072
Ver los metadatos del registro completo
id |
CONICETDig_104649adc30c2b2fbfed1229544858ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43072 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unified formalism for Palatini gravityCapriotti, SantiagoVARIATIONAL PROBLEMSUNIFIED FORMALISMPALATINI GRAVITYUNIMODULAR GRAVITYCONNECTION BUNDLEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper is devoted to the construction of a unified formalism for Palatini and unimodular gravity. The idea is to employ a relationship between unified formalism for a Griffiths variational problem and its classical Lepage-equivalent variational problem. The main geometrical tools involved in these constructions are canonical forms living on the first jet of the frame bundle for the spacetime manifold. These forms play an essential role in providing a global version of the Palatini Lagrangian and expressing the metricity condition in an invariant form. With them, we were able to find the associated equations of motion in invariant terms and, by using previous results from the literature, to prove their involutivity. As a bonus, we showed how this construction can be used to provide a unified formalism for the so-called unimodular gravity by employing a reduction of the structure group of the frame bundle to the special linear group.Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaWorld Scientific2017-12-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43072Capriotti, Santiago; Unified formalism for Palatini gravity; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 3; 12-12-2017; 1-330219-88781793-6977CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219887818500445info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219887818500445info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:51Zoai:ri.conicet.gov.ar:11336/43072instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:51.53CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unified formalism for Palatini gravity |
title |
Unified formalism for Palatini gravity |
spellingShingle |
Unified formalism for Palatini gravity Capriotti, Santiago VARIATIONAL PROBLEMS UNIFIED FORMALISM PALATINI GRAVITY UNIMODULAR GRAVITY CONNECTION BUNDLE |
title_short |
Unified formalism for Palatini gravity |
title_full |
Unified formalism for Palatini gravity |
title_fullStr |
Unified formalism for Palatini gravity |
title_full_unstemmed |
Unified formalism for Palatini gravity |
title_sort |
Unified formalism for Palatini gravity |
dc.creator.none.fl_str_mv |
Capriotti, Santiago |
author |
Capriotti, Santiago |
author_facet |
Capriotti, Santiago |
author_role |
author |
dc.subject.none.fl_str_mv |
VARIATIONAL PROBLEMS UNIFIED FORMALISM PALATINI GRAVITY UNIMODULAR GRAVITY CONNECTION BUNDLE |
topic |
VARIATIONAL PROBLEMS UNIFIED FORMALISM PALATINI GRAVITY UNIMODULAR GRAVITY CONNECTION BUNDLE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper is devoted to the construction of a unified formalism for Palatini and unimodular gravity. The idea is to employ a relationship between unified formalism for a Griffiths variational problem and its classical Lepage-equivalent variational problem. The main geometrical tools involved in these constructions are canonical forms living on the first jet of the frame bundle for the spacetime manifold. These forms play an essential role in providing a global version of the Palatini Lagrangian and expressing the metricity condition in an invariant form. With them, we were able to find the associated equations of motion in invariant terms and, by using previous results from the literature, to prove their involutivity. As a bonus, we showed how this construction can be used to provide a unified formalism for the so-called unimodular gravity by employing a reduction of the structure group of the frame bundle to the special linear group. Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina |
description |
This paper is devoted to the construction of a unified formalism for Palatini and unimodular gravity. The idea is to employ a relationship between unified formalism for a Griffiths variational problem and its classical Lepage-equivalent variational problem. The main geometrical tools involved in these constructions are canonical forms living on the first jet of the frame bundle for the spacetime manifold. These forms play an essential role in providing a global version of the Palatini Lagrangian and expressing the metricity condition in an invariant form. With them, we were able to find the associated equations of motion in invariant terms and, by using previous results from the literature, to prove their involutivity. As a bonus, we showed how this construction can be used to provide a unified formalism for the so-called unimodular gravity by employing a reduction of the structure group of the frame bundle to the special linear group. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43072 Capriotti, Santiago; Unified formalism for Palatini gravity; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 3; 12-12-2017; 1-33 0219-8878 1793-6977 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43072 |
identifier_str_mv |
Capriotti, Santiago; Unified formalism for Palatini gravity; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 3; 12-12-2017; 1-33 0219-8878 1793-6977 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219887818500445 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219887818500445 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269252483022848 |
score |
13.13397 |