Variational reduction of lagrangian systems with general constraints
- Autores
- Grillo, Sergio Daniel; Zuccalli, Marcela
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we present an alternative procedure for reducing, in the Lagrangian formalism, the equations of motion of first order constrained mechanical systems with symmetry. The procedure involves two principal connections: one of them is used to define the reduced degrees of freedom and the other one to decompose variations into horizontal and vertical components. On the one hand, we show that this new procedure is particularly useful when the configuration space is a trivial principal bundle over the symmetry group, which is the case of many interesting examples. On the other hand, based on that procedure, we extend in a natural way the variational reduction methods to the Lagrangian systems with higher order constraints. Examples are discussed in order to illustrate the involved theorethical constructions.
Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
Lagrangian systems
Variational reduction
Principal connections - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/195172
Ver los metadatos del registro completo
id |
CONICETDig_db4371fb4cecc91c6b14a322885460c7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/195172 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Variational reduction of lagrangian systems with general constraintsGrillo, Sergio DanielZuccalli, MarcelaLagrangian systemsVariational reductionPrincipal connectionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we present an alternative procedure for reducing, in the Lagrangian formalism, the equations of motion of first order constrained mechanical systems with symmetry. The procedure involves two principal connections: one of them is used to define the reduced degrees of freedom and the other one to decompose variations into horizontal and vertical components. On the one hand, we show that this new procedure is particularly useful when the configuration space is a trivial principal bundle over the symmetry group, which is the case of many interesting examples. On the other hand, based on that procedure, we extend in a natural way the variational reduction methods to the Lagrangian systems with higher order constraints. Examples are discussed in order to illustrate the involved theorethical constructions.Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaAmerican Institute of Mathematical Sciences2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195172Grillo, Sergio Daniel; Zuccalli, Marcela; Variational reduction of lagrangian systems with general constraints; American Institute of Mathematical Sciences; Journal of Geometric Mechanics; 4; 1; 4-2012; 49-881941-4889CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/jgm.2012.4.49info:eu-repo/semantics/altIdentifier/doi/10.3934/jgm.2012.4.49info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:45Zoai:ri.conicet.gov.ar:11336/195172instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:45.503CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Variational reduction of lagrangian systems with general constraints |
title |
Variational reduction of lagrangian systems with general constraints |
spellingShingle |
Variational reduction of lagrangian systems with general constraints Grillo, Sergio Daniel Lagrangian systems Variational reduction Principal connections |
title_short |
Variational reduction of lagrangian systems with general constraints |
title_full |
Variational reduction of lagrangian systems with general constraints |
title_fullStr |
Variational reduction of lagrangian systems with general constraints |
title_full_unstemmed |
Variational reduction of lagrangian systems with general constraints |
title_sort |
Variational reduction of lagrangian systems with general constraints |
dc.creator.none.fl_str_mv |
Grillo, Sergio Daniel Zuccalli, Marcela |
author |
Grillo, Sergio Daniel |
author_facet |
Grillo, Sergio Daniel Zuccalli, Marcela |
author_role |
author |
author2 |
Zuccalli, Marcela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Lagrangian systems Variational reduction Principal connections |
topic |
Lagrangian systems Variational reduction Principal connections |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we present an alternative procedure for reducing, in the Lagrangian formalism, the equations of motion of first order constrained mechanical systems with symmetry. The procedure involves two principal connections: one of them is used to define the reduced degrees of freedom and the other one to decompose variations into horizontal and vertical components. On the one hand, we show that this new procedure is particularly useful when the configuration space is a trivial principal bundle over the symmetry group, which is the case of many interesting examples. On the other hand, based on that procedure, we extend in a natural way the variational reduction methods to the Lagrangian systems with higher order constraints. Examples are discussed in order to illustrate the involved theorethical constructions. Fil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
In this paper we present an alternative procedure for reducing, in the Lagrangian formalism, the equations of motion of first order constrained mechanical systems with symmetry. The procedure involves two principal connections: one of them is used to define the reduced degrees of freedom and the other one to decompose variations into horizontal and vertical components. On the one hand, we show that this new procedure is particularly useful when the configuration space is a trivial principal bundle over the symmetry group, which is the case of many interesting examples. On the other hand, based on that procedure, we extend in a natural way the variational reduction methods to the Lagrangian systems with higher order constraints. Examples are discussed in order to illustrate the involved theorethical constructions. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/195172 Grillo, Sergio Daniel; Zuccalli, Marcela; Variational reduction of lagrangian systems with general constraints; American Institute of Mathematical Sciences; Journal of Geometric Mechanics; 4; 1; 4-2012; 49-88 1941-4889 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/195172 |
identifier_str_mv |
Grillo, Sergio Daniel; Zuccalli, Marcela; Variational reduction of lagrangian systems with general constraints; American Institute of Mathematical Sciences; Journal of Geometric Mechanics; 4; 1; 4-2012; 49-88 1941-4889 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/jgm.2012.4.49 info:eu-repo/semantics/altIdentifier/doi/10.3934/jgm.2012.4.49 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614353251205120 |
score |
13.070432 |