Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design
- Autores
- Vera Candioti, Luciana; Teglia, Carla Mariela; Cámara, María Silvia
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A dispersive liquid–liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 μL dichloromethane (extract solvent) and 1250 μL ACN (dispersive solvent) in 500 μL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N2 steam. The residue was resuspended into 50 μL of water–ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na2B4O7) and di-sodium hydrogen phosphate (Na2HPO4) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s.
Fil: Vera Candioti, Luciana. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Teglia, Carla Mariela. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Cámara, María Silvia. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina - Materia
-
Dispersive Liquid-Liquid Microextraction
Experimental Design
Fluoroquinolones
Porcine Blood - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69058
Ver los metadatos del registro completo
id |
CONICETDig_a3dbf58bc96e62a5ed677561f4b91f56 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69058 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental designVera Candioti, LucianaTeglia, Carla MarielaCámara, María SilviaDispersive Liquid-Liquid MicroextractionExperimental DesignFluoroquinolonesPorcine Bloodhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A dispersive liquid–liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 μL dichloromethane (extract solvent) and 1250 μL ACN (dispersive solvent) in 500 μL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N2 steam. The residue was resuspended into 50 μL of water–ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na2B4O7) and di-sodium hydrogen phosphate (Na2HPO4) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s.Fil: Vera Candioti, Luciana. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Teglia, Carla Mariela. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Cámara, María Silvia. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; ArgentinaWiley VCH Verlag2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69058Vera Candioti, Luciana; Teglia, Carla Mariela; Cámara, María Silvia; Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design; Wiley VCH Verlag; Electrophoresis; 37; 20; 10-2016; 2670-26770173-0835CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/elps.201600103info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/elps.201600103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:03Zoai:ri.conicet.gov.ar:11336/69058instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:03.884CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design |
title |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design |
spellingShingle |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design Vera Candioti, Luciana Dispersive Liquid-Liquid Microextraction Experimental Design Fluoroquinolones Porcine Blood |
title_short |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design |
title_full |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design |
title_fullStr |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design |
title_full_unstemmed |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design |
title_sort |
Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design |
dc.creator.none.fl_str_mv |
Vera Candioti, Luciana Teglia, Carla Mariela Cámara, María Silvia |
author |
Vera Candioti, Luciana |
author_facet |
Vera Candioti, Luciana Teglia, Carla Mariela Cámara, María Silvia |
author_role |
author |
author2 |
Teglia, Carla Mariela Cámara, María Silvia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dispersive Liquid-Liquid Microextraction Experimental Design Fluoroquinolones Porcine Blood |
topic |
Dispersive Liquid-Liquid Microextraction Experimental Design Fluoroquinolones Porcine Blood |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A dispersive liquid–liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 μL dichloromethane (extract solvent) and 1250 μL ACN (dispersive solvent) in 500 μL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N2 steam. The residue was resuspended into 50 μL of water–ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na2B4O7) and di-sodium hydrogen phosphate (Na2HPO4) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s. Fil: Vera Candioti, Luciana. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Teglia, Carla Mariela. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Cámara, María Silvia. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Química. Cátedra de Química Analítica; Argentina |
description |
A dispersive liquid–liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 μL dichloromethane (extract solvent) and 1250 μL ACN (dispersive solvent) in 500 μL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N2 steam. The residue was resuspended into 50 μL of water–ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na2B4O7) and di-sodium hydrogen phosphate (Na2HPO4) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69058 Vera Candioti, Luciana; Teglia, Carla Mariela; Cámara, María Silvia; Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design; Wiley VCH Verlag; Electrophoresis; 37; 20; 10-2016; 2670-2677 0173-0835 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69058 |
identifier_str_mv |
Vera Candioti, Luciana; Teglia, Carla Mariela; Cámara, María Silvia; Dispersive liquid–liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design; Wiley VCH Verlag; Electrophoresis; 37; 20; 10-2016; 2670-2677 0173-0835 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/elps.201600103 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/elps.201600103 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268834900213760 |
score |
13.13397 |