Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
- Autores
- Palma, Joaquín Horacio; Bertuola, Marcos; González Sánchez Wusener, Ana Elena; Arregui, Carlos Oscar; Hermida, Élida B.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The success of 3D bioprinting in tissue engineering relies on i) precise bioink deposition for creating intricate tissue architectures and ii) good cell viability after printing. However, printed strands made of hydrogels are susceptible to time-dependent deformation —known as creep— which can compromise printing accuracy. Creep might be reduced by increasing the crosslink density, but this could be deleterious for cells in the bioink. Therefore, this study investigates the impact of creep on the printability of an Alginate-Gelatin-Hyaluronic acid bioink. Creep data were fitted with a linear rheological model that enables to predict the strand deformation over time. Furthermore, creep curves measured at different temperatures allow to determine an Arrhenius dependence of the parameters of the rheological model with time. The activation energies of the mechanisms involved in the rheological behavior of the bioink suggest that gelatin plays a significant role in the viscous response, while the network made by the entangled chains of alginate and hyaluronic acid is responsible for the anelastic deformation. This deformation decreased with simultaneous nebulization with CaCl2. Additionally, this bioink exhibited a high percentage of viable NIH/3T3 fibroblasts (78-90%) after 3D-bioprinting and Ca2+ immersion crosslinking processes.
Fil: Palma, Joaquín Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
Fil: Bertuola, Marcos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
Fil: González Sánchez Wusener, Ana Elena. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Arregui, Carlos Oscar. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Hermida, Élida B.. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina - Materia
-
HYDROGELS
CREEP
ACTIVATION ENERGY
3D BIOPRINTING
FIBROBLAST - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265620
Ver los metadatos del registro completo
id |
CONICETDig_a3ade15cde99a656dd7298e9c5e9c5e6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265620 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after BioprintingPalma, Joaquín HoracioBertuola, MarcosGonzález Sánchez Wusener, Ana ElenaArregui, Carlos OscarHermida, Élida B.HYDROGELSCREEPACTIVATION ENERGY3D BIOPRINTINGFIBROBLASThttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3The success of 3D bioprinting in tissue engineering relies on i) precise bioink deposition for creating intricate tissue architectures and ii) good cell viability after printing. However, printed strands made of hydrogels are susceptible to time-dependent deformation —known as creep— which can compromise printing accuracy. Creep might be reduced by increasing the crosslink density, but this could be deleterious for cells in the bioink. Therefore, this study investigates the impact of creep on the printability of an Alginate-Gelatin-Hyaluronic acid bioink. Creep data were fitted with a linear rheological model that enables to predict the strand deformation over time. Furthermore, creep curves measured at different temperatures allow to determine an Arrhenius dependence of the parameters of the rheological model with time. The activation energies of the mechanisms involved in the rheological behavior of the bioink suggest that gelatin plays a significant role in the viscous response, while the network made by the entangled chains of alginate and hyaluronic acid is responsible for the anelastic deformation. This deformation decreased with simultaneous nebulization with CaCl2. Additionally, this bioink exhibited a high percentage of viable NIH/3T3 fibroblasts (78-90%) after 3D-bioprinting and Ca2+ immersion crosslinking processes.Fil: Palma, Joaquín Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; ArgentinaFil: Bertuola, Marcos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; ArgentinaFil: González Sánchez Wusener, Ana Elena. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Arregui, Carlos Oscar. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Hermida, Élida B.. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; ArgentinaElsevier2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265620Palma, Joaquín Horacio; Bertuola, Marcos; González Sánchez Wusener, Ana Elena; Arregui, Carlos Oscar; Hermida, Élida B.; Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting; Elsevier; SSRN; 7-2024; 1-191556-5068CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4880245info:eu-repo/semantics/altIdentifier/doi/10.2139/ssrn.4880245info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:45Zoai:ri.conicet.gov.ar:11336/265620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:45.34CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting |
title |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting |
spellingShingle |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting Palma, Joaquín Horacio HYDROGELS CREEP ACTIVATION ENERGY 3D BIOPRINTING FIBROBLAST |
title_short |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting |
title_full |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting |
title_fullStr |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting |
title_full_unstemmed |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting |
title_sort |
Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting |
dc.creator.none.fl_str_mv |
Palma, Joaquín Horacio Bertuola, Marcos González Sánchez Wusener, Ana Elena Arregui, Carlos Oscar Hermida, Élida B. |
author |
Palma, Joaquín Horacio |
author_facet |
Palma, Joaquín Horacio Bertuola, Marcos González Sánchez Wusener, Ana Elena Arregui, Carlos Oscar Hermida, Élida B. |
author_role |
author |
author2 |
Bertuola, Marcos González Sánchez Wusener, Ana Elena Arregui, Carlos Oscar Hermida, Élida B. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
HYDROGELS CREEP ACTIVATION ENERGY 3D BIOPRINTING FIBROBLAST |
topic |
HYDROGELS CREEP ACTIVATION ENERGY 3D BIOPRINTING FIBROBLAST |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.4 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The success of 3D bioprinting in tissue engineering relies on i) precise bioink deposition for creating intricate tissue architectures and ii) good cell viability after printing. However, printed strands made of hydrogels are susceptible to time-dependent deformation —known as creep— which can compromise printing accuracy. Creep might be reduced by increasing the crosslink density, but this could be deleterious for cells in the bioink. Therefore, this study investigates the impact of creep on the printability of an Alginate-Gelatin-Hyaluronic acid bioink. Creep data were fitted with a linear rheological model that enables to predict the strand deformation over time. Furthermore, creep curves measured at different temperatures allow to determine an Arrhenius dependence of the parameters of the rheological model with time. The activation energies of the mechanisms involved in the rheological behavior of the bioink suggest that gelatin plays a significant role in the viscous response, while the network made by the entangled chains of alginate and hyaluronic acid is responsible for the anelastic deformation. This deformation decreased with simultaneous nebulization with CaCl2. Additionally, this bioink exhibited a high percentage of viable NIH/3T3 fibroblasts (78-90%) after 3D-bioprinting and Ca2+ immersion crosslinking processes. Fil: Palma, Joaquín Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina Fil: Bertuola, Marcos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina Fil: González Sánchez Wusener, Ana Elena. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Arregui, Carlos Oscar. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Hermida, Élida B.. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina |
description |
The success of 3D bioprinting in tissue engineering relies on i) precise bioink deposition for creating intricate tissue architectures and ii) good cell viability after printing. However, printed strands made of hydrogels are susceptible to time-dependent deformation —known as creep— which can compromise printing accuracy. Creep might be reduced by increasing the crosslink density, but this could be deleterious for cells in the bioink. Therefore, this study investigates the impact of creep on the printability of an Alginate-Gelatin-Hyaluronic acid bioink. Creep data were fitted with a linear rheological model that enables to predict the strand deformation over time. Furthermore, creep curves measured at different temperatures allow to determine an Arrhenius dependence of the parameters of the rheological model with time. The activation energies of the mechanisms involved in the rheological behavior of the bioink suggest that gelatin plays a significant role in the viscous response, while the network made by the entangled chains of alginate and hyaluronic acid is responsible for the anelastic deformation. This deformation decreased with simultaneous nebulization with CaCl2. Additionally, this bioink exhibited a high percentage of viable NIH/3T3 fibroblasts (78-90%) after 3D-bioprinting and Ca2+ immersion crosslinking processes. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265620 Palma, Joaquín Horacio; Bertuola, Marcos; González Sánchez Wusener, Ana Elena; Arregui, Carlos Oscar; Hermida, Élida B.; Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting; Elsevier; SSRN; 7-2024; 1-19 1556-5068 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265620 |
identifier_str_mv |
Palma, Joaquín Horacio; Bertuola, Marcos; González Sánchez Wusener, Ana Elena; Arregui, Carlos Oscar; Hermida, Élida B.; Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting; Elsevier; SSRN; 7-2024; 1-19 1556-5068 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4880245 info:eu-repo/semantics/altIdentifier/doi/10.2139/ssrn.4880245 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614036606418944 |
score |
13.070432 |