Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting

Autores
Palma, Joaquín Horacio; Bertuola, Marcos; González Sánchez Wusener, Ana Elena; Arregui, Carlos Oscar; Hermida, Élida B.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The success of 3D bioprinting in tissue engineering relies on i) precise bioink deposition for creating intricate tissue architectures and ii) good cell viability after printing. However, printed strands made of hydrogels are susceptible to time-dependent deformation —known as creep— which can compromise printing accuracy. Creep might be reduced by increasing the crosslink density, but this could be deleterious for cells in the bioink. Therefore, this study investigates the impact of creep on the printability of an Alginate-Gelatin-Hyaluronic acid bioink. Creep data were fitted with a linear rheological model that enables to predict the strand deformation over time. Furthermore, creep curves measured at different temperatures allow to determine an Arrhenius dependence of the parameters of the rheological model with time. The activation energies of the mechanisms involved in the rheological behavior of the bioink suggest that gelatin plays a significant role in the viscous response, while the network made by the entangled chains of alginate and hyaluronic acid is responsible for the anelastic deformation. This deformation decreased with simultaneous nebulization with CaCl2. Additionally, this bioink exhibited a high percentage of viable NIH/3T3 fibroblasts (78-90%) after 3D-bioprinting and Ca2+ immersion crosslinking processes.
Fil: Palma, Joaquín Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
Fil: Bertuola, Marcos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
Fil: González Sánchez Wusener, Ana Elena. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Arregui, Carlos Oscar. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Hermida, Élida B.. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
Materia
HYDROGELS
CREEP
ACTIVATION ENERGY
3D BIOPRINTING
FIBROBLAST
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265620

id CONICETDig_a3ade15cde99a656dd7298e9c5e9c5e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/265620
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after BioprintingPalma, Joaquín HoracioBertuola, MarcosGonzález Sánchez Wusener, Ana ElenaArregui, Carlos OscarHermida, Élida B.HYDROGELSCREEPACTIVATION ENERGY3D BIOPRINTINGFIBROBLASThttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3The success of 3D bioprinting in tissue engineering relies on i) precise bioink deposition for creating intricate tissue architectures and ii) good cell viability after printing. However, printed strands made of hydrogels are susceptible to time-dependent deformation —known as creep— which can compromise printing accuracy. Creep might be reduced by increasing the crosslink density, but this could be deleterious for cells in the bioink. Therefore, this study investigates the impact of creep on the printability of an Alginate-Gelatin-Hyaluronic acid bioink. Creep data were fitted with a linear rheological model that enables to predict the strand deformation over time. Furthermore, creep curves measured at different temperatures allow to determine an Arrhenius dependence of the parameters of the rheological model with time. The activation energies of the mechanisms involved in the rheological behavior of the bioink suggest that gelatin plays a significant role in the viscous response, while the network made by the entangled chains of alginate and hyaluronic acid is responsible for the anelastic deformation. This deformation decreased with simultaneous nebulization with CaCl2. Additionally, this bioink exhibited a high percentage of viable NIH/3T3 fibroblasts (78-90%) after 3D-bioprinting and Ca2+ immersion crosslinking processes.Fil: Palma, Joaquín Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; ArgentinaFil: Bertuola, Marcos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; ArgentinaFil: González Sánchez Wusener, Ana Elena. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Arregui, Carlos Oscar. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Hermida, Élida B.. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; ArgentinaElsevier2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265620Palma, Joaquín Horacio; Bertuola, Marcos; González Sánchez Wusener, Ana Elena; Arregui, Carlos Oscar; Hermida, Élida B.; Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting; Elsevier; SSRN; 7-2024; 1-191556-5068CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4880245info:eu-repo/semantics/altIdentifier/doi/10.2139/ssrn.4880245info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:45Zoai:ri.conicet.gov.ar:11336/265620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:45.34CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
title Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
spellingShingle Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
Palma, Joaquín Horacio
HYDROGELS
CREEP
ACTIVATION ENERGY
3D BIOPRINTING
FIBROBLAST
title_short Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
title_full Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
title_fullStr Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
title_full_unstemmed Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
title_sort Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting
dc.creator.none.fl_str_mv Palma, Joaquín Horacio
Bertuola, Marcos
González Sánchez Wusener, Ana Elena
Arregui, Carlos Oscar
Hermida, Élida B.
author Palma, Joaquín Horacio
author_facet Palma, Joaquín Horacio
Bertuola, Marcos
González Sánchez Wusener, Ana Elena
Arregui, Carlos Oscar
Hermida, Élida B.
author_role author
author2 Bertuola, Marcos
González Sánchez Wusener, Ana Elena
Arregui, Carlos Oscar
Hermida, Élida B.
author2_role author
author
author
author
dc.subject.none.fl_str_mv HYDROGELS
CREEP
ACTIVATION ENERGY
3D BIOPRINTING
FIBROBLAST
topic HYDROGELS
CREEP
ACTIVATION ENERGY
3D BIOPRINTING
FIBROBLAST
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.4
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv The success of 3D bioprinting in tissue engineering relies on i) precise bioink deposition for creating intricate tissue architectures and ii) good cell viability after printing. However, printed strands made of hydrogels are susceptible to time-dependent deformation —known as creep— which can compromise printing accuracy. Creep might be reduced by increasing the crosslink density, but this could be deleterious for cells in the bioink. Therefore, this study investigates the impact of creep on the printability of an Alginate-Gelatin-Hyaluronic acid bioink. Creep data were fitted with a linear rheological model that enables to predict the strand deformation over time. Furthermore, creep curves measured at different temperatures allow to determine an Arrhenius dependence of the parameters of the rheological model with time. The activation energies of the mechanisms involved in the rheological behavior of the bioink suggest that gelatin plays a significant role in the viscous response, while the network made by the entangled chains of alginate and hyaluronic acid is responsible for the anelastic deformation. This deformation decreased with simultaneous nebulization with CaCl2. Additionally, this bioink exhibited a high percentage of viable NIH/3T3 fibroblasts (78-90%) after 3D-bioprinting and Ca2+ immersion crosslinking processes.
Fil: Palma, Joaquín Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
Fil: Bertuola, Marcos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
Fil: González Sánchez Wusener, Ana Elena. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Arregui, Carlos Oscar. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Hermida, Élida B.. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina
description The success of 3D bioprinting in tissue engineering relies on i) precise bioink deposition for creating intricate tissue architectures and ii) good cell viability after printing. However, printed strands made of hydrogels are susceptible to time-dependent deformation —known as creep— which can compromise printing accuracy. Creep might be reduced by increasing the crosslink density, but this could be deleterious for cells in the bioink. Therefore, this study investigates the impact of creep on the printability of an Alginate-Gelatin-Hyaluronic acid bioink. Creep data were fitted with a linear rheological model that enables to predict the strand deformation over time. Furthermore, creep curves measured at different temperatures allow to determine an Arrhenius dependence of the parameters of the rheological model with time. The activation energies of the mechanisms involved in the rheological behavior of the bioink suggest that gelatin plays a significant role in the viscous response, while the network made by the entangled chains of alginate and hyaluronic acid is responsible for the anelastic deformation. This deformation decreased with simultaneous nebulization with CaCl2. Additionally, this bioink exhibited a high percentage of viable NIH/3T3 fibroblasts (78-90%) after 3D-bioprinting and Ca2+ immersion crosslinking processes.
publishDate 2024
dc.date.none.fl_str_mv 2024-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265620
Palma, Joaquín Horacio; Bertuola, Marcos; González Sánchez Wusener, Ana Elena; Arregui, Carlos Oscar; Hermida, Élida B.; Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting; Elsevier; SSRN; 7-2024; 1-19
1556-5068
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265620
identifier_str_mv Palma, Joaquín Horacio; Bertuola, Marcos; González Sánchez Wusener, Ana Elena; Arregui, Carlos Oscar; Hermida, Élida B.; Creep of Alginate-Gelatin-Hyaluronic Acid Strands and Cell Viability after Bioprinting; Elsevier; SSRN; 7-2024; 1-19
1556-5068
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4880245
info:eu-repo/semantics/altIdentifier/doi/10.2139/ssrn.4880245
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614036606418944
score 13.070432