Equivalences between two matching models: Stability

Autores
Manasero, Paola Belén
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the equivalences between two matching models, wherethe agents in one side of the market, the workers, have responsive preferenceson the set of agents of the other side, the firms. We modify the firms? preferenceson subsets of workers and define a function between the set of manyto-manymatchings and the set of related many-to-one matchings. We provethat this function restricted to the set of stable matchings is bijective and thatpreserves the stability of the corresponding matchings in both models. Usingthis function, we prove that for the many-to-many problem with substitutablepreferences for the firms and responsive preferences for the workers, the set ofstable matchings is non-empty and has a lattice structure.
Fil: Manasero, Paola Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
MATCHING
STABILITY
RESPONSIVE
SUBSTITUTABILITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/93267

id CONICETDig_a350383f29a3dafca75f3b34fc6723de
oai_identifier_str oai:ri.conicet.gov.ar:11336/93267
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Equivalences between two matching models: StabilityManasero, Paola BelénMATCHINGSTABILITYRESPONSIVESUBSTITUTABILITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the equivalences between two matching models, wherethe agents in one side of the market, the workers, have responsive preferenceson the set of agents of the other side, the firms. We modify the firms? preferenceson subsets of workers and define a function between the set of manyto-manymatchings and the set of related many-to-one matchings. We provethat this function restricted to the set of stable matchings is bijective and thatpreserves the stability of the corresponding matchings in both models. Usingthis function, we prove that for the many-to-many problem with substitutablepreferences for the firms and responsive preferences for the workers, the set ofstable matchings is non-empty and has a lattice structure.Fil: Manasero, Paola Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaAmerican Institute of Mathematical Sciences2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93267Manasero, Paola Belén; Equivalences between two matching models: Stability; American Institute of Mathematical Sciences; Journal of Dynamics & Games; 4; 5; 2-2018; 1-192164-6074CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/jdg.2018013info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/jdg.2018013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:36Zoai:ri.conicet.gov.ar:11336/93267instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:36.606CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Equivalences between two matching models: Stability
title Equivalences between two matching models: Stability
spellingShingle Equivalences between two matching models: Stability
Manasero, Paola Belén
MATCHING
STABILITY
RESPONSIVE
SUBSTITUTABILITY
title_short Equivalences between two matching models: Stability
title_full Equivalences between two matching models: Stability
title_fullStr Equivalences between two matching models: Stability
title_full_unstemmed Equivalences between two matching models: Stability
title_sort Equivalences between two matching models: Stability
dc.creator.none.fl_str_mv Manasero, Paola Belén
author Manasero, Paola Belén
author_facet Manasero, Paola Belén
author_role author
dc.subject.none.fl_str_mv MATCHING
STABILITY
RESPONSIVE
SUBSTITUTABILITY
topic MATCHING
STABILITY
RESPONSIVE
SUBSTITUTABILITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the equivalences between two matching models, wherethe agents in one side of the market, the workers, have responsive preferenceson the set of agents of the other side, the firms. We modify the firms? preferenceson subsets of workers and define a function between the set of manyto-manymatchings and the set of related many-to-one matchings. We provethat this function restricted to the set of stable matchings is bijective and thatpreserves the stability of the corresponding matchings in both models. Usingthis function, we prove that for the many-to-many problem with substitutablepreferences for the firms and responsive preferences for the workers, the set ofstable matchings is non-empty and has a lattice structure.
Fil: Manasero, Paola Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description We study the equivalences between two matching models, wherethe agents in one side of the market, the workers, have responsive preferenceson the set of agents of the other side, the firms. We modify the firms? preferenceson subsets of workers and define a function between the set of manyto-manymatchings and the set of related many-to-one matchings. We provethat this function restricted to the set of stable matchings is bijective and thatpreserves the stability of the corresponding matchings in both models. Usingthis function, we prove that for the many-to-many problem with substitutablepreferences for the firms and responsive preferences for the workers, the set ofstable matchings is non-empty and has a lattice structure.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/93267
Manasero, Paola Belén; Equivalences between two matching models: Stability; American Institute of Mathematical Sciences; Journal of Dynamics & Games; 4; 5; 2-2018; 1-19
2164-6074
CONICET Digital
CONICET
url http://hdl.handle.net/11336/93267
identifier_str_mv Manasero, Paola Belén; Equivalences between two matching models: Stability; American Institute of Mathematical Sciences; Journal of Dynamics & Games; 4; 5; 2-2018; 1-19
2164-6074
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3934/jdg.2018013
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/jdg.2018013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences
publisher.none.fl_str_mv American Institute of Mathematical Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614169175785472
score 13.070432