Equivalences between two matching models: Stability
- Autores
- Manasero, Paola Belén
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the equivalences between two matching models, wherethe agents in one side of the market, the workers, have responsive preferenceson the set of agents of the other side, the firms. We modify the firms? preferenceson subsets of workers and define a function between the set of manyto-manymatchings and the set of related many-to-one matchings. We provethat this function restricted to the set of stable matchings is bijective and thatpreserves the stability of the corresponding matchings in both models. Usingthis function, we prove that for the many-to-many problem with substitutablepreferences for the firms and responsive preferences for the workers, the set ofstable matchings is non-empty and has a lattice structure.
Fil: Manasero, Paola Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
MATCHING
STABILITY
RESPONSIVE
SUBSTITUTABILITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93267
Ver los metadatos del registro completo
id |
CONICETDig_a350383f29a3dafca75f3b34fc6723de |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93267 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Equivalences between two matching models: StabilityManasero, Paola BelénMATCHINGSTABILITYRESPONSIVESUBSTITUTABILITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the equivalences between two matching models, wherethe agents in one side of the market, the workers, have responsive preferenceson the set of agents of the other side, the firms. We modify the firms? preferenceson subsets of workers and define a function between the set of manyto-manymatchings and the set of related many-to-one matchings. We provethat this function restricted to the set of stable matchings is bijective and thatpreserves the stability of the corresponding matchings in both models. Usingthis function, we prove that for the many-to-many problem with substitutablepreferences for the firms and responsive preferences for the workers, the set ofstable matchings is non-empty and has a lattice structure.Fil: Manasero, Paola Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaAmerican Institute of Mathematical Sciences2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93267Manasero, Paola Belén; Equivalences between two matching models: Stability; American Institute of Mathematical Sciences; Journal of Dynamics & Games; 4; 5; 2-2018; 1-192164-6074CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/jdg.2018013info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/jdg.2018013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:36Zoai:ri.conicet.gov.ar:11336/93267instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:36.606CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Equivalences between two matching models: Stability |
title |
Equivalences between two matching models: Stability |
spellingShingle |
Equivalences between two matching models: Stability Manasero, Paola Belén MATCHING STABILITY RESPONSIVE SUBSTITUTABILITY |
title_short |
Equivalences between two matching models: Stability |
title_full |
Equivalences between two matching models: Stability |
title_fullStr |
Equivalences between two matching models: Stability |
title_full_unstemmed |
Equivalences between two matching models: Stability |
title_sort |
Equivalences between two matching models: Stability |
dc.creator.none.fl_str_mv |
Manasero, Paola Belén |
author |
Manasero, Paola Belén |
author_facet |
Manasero, Paola Belén |
author_role |
author |
dc.subject.none.fl_str_mv |
MATCHING STABILITY RESPONSIVE SUBSTITUTABILITY |
topic |
MATCHING STABILITY RESPONSIVE SUBSTITUTABILITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the equivalences between two matching models, wherethe agents in one side of the market, the workers, have responsive preferenceson the set of agents of the other side, the firms. We modify the firms? preferenceson subsets of workers and define a function between the set of manyto-manymatchings and the set of related many-to-one matchings. We provethat this function restricted to the set of stable matchings is bijective and thatpreserves the stability of the corresponding matchings in both models. Usingthis function, we prove that for the many-to-many problem with substitutablepreferences for the firms and responsive preferences for the workers, the set ofstable matchings is non-empty and has a lattice structure. Fil: Manasero, Paola Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
We study the equivalences between two matching models, wherethe agents in one side of the market, the workers, have responsive preferenceson the set of agents of the other side, the firms. We modify the firms? preferenceson subsets of workers and define a function between the set of manyto-manymatchings and the set of related many-to-one matchings. We provethat this function restricted to the set of stable matchings is bijective and thatpreserves the stability of the corresponding matchings in both models. Usingthis function, we prove that for the many-to-many problem with substitutablepreferences for the firms and responsive preferences for the workers, the set ofstable matchings is non-empty and has a lattice structure. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93267 Manasero, Paola Belén; Equivalences between two matching models: Stability; American Institute of Mathematical Sciences; Journal of Dynamics & Games; 4; 5; 2-2018; 1-19 2164-6074 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93267 |
identifier_str_mv |
Manasero, Paola Belén; Equivalences between two matching models: Stability; American Institute of Mathematical Sciences; Journal of Dynamics & Games; 4; 5; 2-2018; 1-19 2164-6074 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3934/jdg.2018013 info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/jdg.2018013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614169175785472 |
score |
13.070432 |