Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT1...
- Autores
- Chaves, Hernan; Dorr, Francisco; Costa, Martín Elías; Serra, María Mercedes; Fernandez Slezak, Diego; Farez, Mauricio Franco; Sevlever, Gustavo; Yañez, Paulina Celia; Cejas, Claudia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background and purpose: There are instances in which an estimate of the brain volume should be obtained from MRI in clinical practice. Our objective is to calculate cross-sectional robustness of a convolutional neural network (CNN) based software (Entelai Pic) for brain volume estimation and compare it to traditional software such as FreeSurfer, CAT12 and FSL in healthy controls (HC). Materials and Methods: Sixteen HC were scanned four times, two different days on two different MRI scanners (1.5 T and 3 T). Volumetric T1-weighted images were acquired and post-processed with FreeSurfer v6.0.0, Entelai Pic v2, CAT12 v12.5 and FSL v5.0.9. Whole-brain, grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes were calculated. Correlation and agreement between methods was assessed using intraclass correlation coefficient (ICC) and Bland Altman plots. Robustness was assessed using the coefficient of variation (CV). Results: Whole-brain volume estimation had better correlation between FreeSurfer and Entelai Pic (ICC (95% CI) 0.96 (0.94−0.97)) than FreeSurfer and CAT12 (0.92 (0.88−0.96)) and FSL (0.87 (0.79−0.91)). WM, GM and CSF showed a similar trend. Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain volumes both on same-scanner (mean CV 1.07, range 0.20–3.13% vs. mean CV 1.05, range 0.21–3.20%, p = 0.86) and on different-scanner variables (mean CV 3.84, range 2.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p = 0.96). Mean post-processing times were 480, 5, 40 and 5 min for FreeSurfer, Entelai Pic, CAT12 and FSL respectively. Conclusion: Based on robustness and processing times, our CNN-based model is suitable for cross-sectional volumetry on clinical practice.
Fil: Chaves, Hernan. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
Fil: Dorr, Francisco. Entelai; Argentina
Fil: Costa, Martín Elías. Entelai; Argentina
Fil: Serra, María Mercedes. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
Fil: Fernandez Slezak, Diego. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Farez, Mauricio Franco. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sevlever, Gustavo. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina
Fil: Yañez, Paulina Celia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Universidad de Buenos Aires; Argentina
Fil: Cejas, Claudia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina - Materia
-
BRAIN
DEEP LEARNING
FREESURFER.
MAGNETIC RESONANCE IMAGING
SEGMENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182236
Ver los metadatos del registro completo
id |
CONICETDig_a320cf61c80bb0aaab5f3513efe4a7a6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182236 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSLChaves, HernanDorr, FranciscoCosta, Martín ElíasSerra, María MercedesFernandez Slezak, DiegoFarez, Mauricio FrancoSevlever, GustavoYañez, Paulina CeliaCejas, ClaudiaBRAINDEEP LEARNINGFREESURFER.MAGNETIC RESONANCE IMAGINGSEGMENTATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background and purpose: There are instances in which an estimate of the brain volume should be obtained from MRI in clinical practice. Our objective is to calculate cross-sectional robustness of a convolutional neural network (CNN) based software (Entelai Pic) for brain volume estimation and compare it to traditional software such as FreeSurfer, CAT12 and FSL in healthy controls (HC). Materials and Methods: Sixteen HC were scanned four times, two different days on two different MRI scanners (1.5 T and 3 T). Volumetric T1-weighted images were acquired and post-processed with FreeSurfer v6.0.0, Entelai Pic v2, CAT12 v12.5 and FSL v5.0.9. Whole-brain, grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes were calculated. Correlation and agreement between methods was assessed using intraclass correlation coefficient (ICC) and Bland Altman plots. Robustness was assessed using the coefficient of variation (CV). Results: Whole-brain volume estimation had better correlation between FreeSurfer and Entelai Pic (ICC (95% CI) 0.96 (0.94−0.97)) than FreeSurfer and CAT12 (0.92 (0.88−0.96)) and FSL (0.87 (0.79−0.91)). WM, GM and CSF showed a similar trend. Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain volumes both on same-scanner (mean CV 1.07, range 0.20–3.13% vs. mean CV 1.05, range 0.21–3.20%, p = 0.86) and on different-scanner variables (mean CV 3.84, range 2.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p = 0.96). Mean post-processing times were 480, 5, 40 and 5 min for FreeSurfer, Entelai Pic, CAT12 and FSL respectively. Conclusion: Based on robustness and processing times, our CNN-based model is suitable for cross-sectional volumetry on clinical practice.Fil: Chaves, Hernan. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Dorr, Francisco. Entelai; ArgentinaFil: Costa, Martín Elías. Entelai; ArgentinaFil: Serra, María Mercedes. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Fernandez Slezak, Diego. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Farez, Mauricio Franco. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sevlever, Gustavo. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; ArgentinaFil: Yañez, Paulina Celia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Universidad de Buenos Aires; ArgentinaFil: Cejas, Claudia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaElsevier2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182236Chaves, Hernan; Dorr, Francisco; Costa, Martín Elías; Serra, María Mercedes; Fernandez Slezak, Diego; et al.; Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL; Elsevier; Journal Of Neuroradiology. Journal de Neuroradiologie.; 48; 3; 5-2021; 147-1560150-98611773-0406CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0150986120302807info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neurad.2020.10.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:31Zoai:ri.conicet.gov.ar:11336/182236instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:31.804CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL |
title |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL |
spellingShingle |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL Chaves, Hernan BRAIN DEEP LEARNING FREESURFER. MAGNETIC RESONANCE IMAGING SEGMENTATION |
title_short |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL |
title_full |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL |
title_fullStr |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL |
title_full_unstemmed |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL |
title_sort |
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL |
dc.creator.none.fl_str_mv |
Chaves, Hernan Dorr, Francisco Costa, Martín Elías Serra, María Mercedes Fernandez Slezak, Diego Farez, Mauricio Franco Sevlever, Gustavo Yañez, Paulina Celia Cejas, Claudia |
author |
Chaves, Hernan |
author_facet |
Chaves, Hernan Dorr, Francisco Costa, Martín Elías Serra, María Mercedes Fernandez Slezak, Diego Farez, Mauricio Franco Sevlever, Gustavo Yañez, Paulina Celia Cejas, Claudia |
author_role |
author |
author2 |
Dorr, Francisco Costa, Martín Elías Serra, María Mercedes Fernandez Slezak, Diego Farez, Mauricio Franco Sevlever, Gustavo Yañez, Paulina Celia Cejas, Claudia |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
BRAIN DEEP LEARNING FREESURFER. MAGNETIC RESONANCE IMAGING SEGMENTATION |
topic |
BRAIN DEEP LEARNING FREESURFER. MAGNETIC RESONANCE IMAGING SEGMENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background and purpose: There are instances in which an estimate of the brain volume should be obtained from MRI in clinical practice. Our objective is to calculate cross-sectional robustness of a convolutional neural network (CNN) based software (Entelai Pic) for brain volume estimation and compare it to traditional software such as FreeSurfer, CAT12 and FSL in healthy controls (HC). Materials and Methods: Sixteen HC were scanned four times, two different days on two different MRI scanners (1.5 T and 3 T). Volumetric T1-weighted images were acquired and post-processed with FreeSurfer v6.0.0, Entelai Pic v2, CAT12 v12.5 and FSL v5.0.9. Whole-brain, grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes were calculated. Correlation and agreement between methods was assessed using intraclass correlation coefficient (ICC) and Bland Altman plots. Robustness was assessed using the coefficient of variation (CV). Results: Whole-brain volume estimation had better correlation between FreeSurfer and Entelai Pic (ICC (95% CI) 0.96 (0.94−0.97)) than FreeSurfer and CAT12 (0.92 (0.88−0.96)) and FSL (0.87 (0.79−0.91)). WM, GM and CSF showed a similar trend. Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain volumes both on same-scanner (mean CV 1.07, range 0.20–3.13% vs. mean CV 1.05, range 0.21–3.20%, p = 0.86) and on different-scanner variables (mean CV 3.84, range 2.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p = 0.96). Mean post-processing times were 480, 5, 40 and 5 min for FreeSurfer, Entelai Pic, CAT12 and FSL respectively. Conclusion: Based on robustness and processing times, our CNN-based model is suitable for cross-sectional volumetry on clinical practice. Fil: Chaves, Hernan. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina Fil: Dorr, Francisco. Entelai; Argentina Fil: Costa, Martín Elías. Entelai; Argentina Fil: Serra, María Mercedes. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina Fil: Fernandez Slezak, Diego. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Farez, Mauricio Franco. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sevlever, Gustavo. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina Fil: Yañez, Paulina Celia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Universidad de Buenos Aires; Argentina Fil: Cejas, Claudia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina |
description |
Background and purpose: There are instances in which an estimate of the brain volume should be obtained from MRI in clinical practice. Our objective is to calculate cross-sectional robustness of a convolutional neural network (CNN) based software (Entelai Pic) for brain volume estimation and compare it to traditional software such as FreeSurfer, CAT12 and FSL in healthy controls (HC). Materials and Methods: Sixteen HC were scanned four times, two different days on two different MRI scanners (1.5 T and 3 T). Volumetric T1-weighted images were acquired and post-processed with FreeSurfer v6.0.0, Entelai Pic v2, CAT12 v12.5 and FSL v5.0.9. Whole-brain, grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes were calculated. Correlation and agreement between methods was assessed using intraclass correlation coefficient (ICC) and Bland Altman plots. Robustness was assessed using the coefficient of variation (CV). Results: Whole-brain volume estimation had better correlation between FreeSurfer and Entelai Pic (ICC (95% CI) 0.96 (0.94−0.97)) than FreeSurfer and CAT12 (0.92 (0.88−0.96)) and FSL (0.87 (0.79−0.91)). WM, GM and CSF showed a similar trend. Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain volumes both on same-scanner (mean CV 1.07, range 0.20–3.13% vs. mean CV 1.05, range 0.21–3.20%, p = 0.86) and on different-scanner variables (mean CV 3.84, range 2.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p = 0.96). Mean post-processing times were 480, 5, 40 and 5 min for FreeSurfer, Entelai Pic, CAT12 and FSL respectively. Conclusion: Based on robustness and processing times, our CNN-based model is suitable for cross-sectional volumetry on clinical practice. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182236 Chaves, Hernan; Dorr, Francisco; Costa, Martín Elías; Serra, María Mercedes; Fernandez Slezak, Diego; et al.; Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL; Elsevier; Journal Of Neuroradiology. Journal de Neuroradiologie.; 48; 3; 5-2021; 147-156 0150-9861 1773-0406 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182236 |
identifier_str_mv |
Chaves, Hernan; Dorr, Francisco; Costa, Martín Elías; Serra, María Mercedes; Fernandez Slezak, Diego; et al.; Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL; Elsevier; Journal Of Neuroradiology. Journal de Neuroradiologie.; 48; 3; 5-2021; 147-156 0150-9861 1773-0406 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0150986120302807 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neurad.2020.10.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269915114897408 |
score |
12.885934 |