Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities
- Autores
- Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Percolation and jamming of linear k-mers (particles occupying k adjacent sites) on two-dimensional square lattices with impurities have been studied by numerical simulations and finite-size scaling analysis. The model offers a simplified representation of the problem of percolation in amorphous solids, where the presence of defects in the system is simulated by introducing a fraction of imperfect bonds ρ, which are considered forbidden for deposition.The dependence of percolation and jamming thresholds on the concentration of defects was investigated for dierent values of k, ranging from 2 to 64. Theresults obtained show that: for each fixed value of k, percolation can occur when ρ is smaller than a certain value ρ*_k; and in the range 0<ρ<ρ*_k, the percolation threshold is practically independent of the fraction of defects. The behavior of ρ*_k as a function of k indicates that the percolation of linear k-mers on square lattices is impossible even for an ideal lattice if k ⪆ 5500. Critical exponents were also calculated to show that the universality class corresponding to ordinary percolation is preserved.
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina - Materia
-
Percolation Problems
Jamming Problems
Linear K-Mers
Disordered Lattices - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14206
Ver los metadatos del registro completo
id |
CONICETDig_a2c830297f1daa09cd614b56507f19c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14206 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impuritiesCentres, Paulo MarceloRamirez Pastor, Antonio JosePercolation ProblemsJamming ProblemsLinear K-MersDisordered Latticeshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Percolation and jamming of linear k-mers (particles occupying k adjacent sites) on two-dimensional square lattices with impurities have been studied by numerical simulations and finite-size scaling analysis. The model offers a simplified representation of the problem of percolation in amorphous solids, where the presence of defects in the system is simulated by introducing a fraction of imperfect bonds ρ, which are considered forbidden for deposition.The dependence of percolation and jamming thresholds on the concentration of defects was investigated for dierent values of k, ranging from 2 to 64. Theresults obtained show that: for each fixed value of k, percolation can occur when ρ is smaller than a certain value ρ*_k; and in the range 0<ρ<ρ*_k, the percolation threshold is practically independent of the fraction of defects. The behavior of ρ*_k as a function of k indicates that the percolation of linear k-mers on square lattices is impossible even for an ideal lattice if k ⪆ 5500. Critical exponents were also calculated to show that the universality class corresponding to ordinary percolation is preserved.Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; ArgentinaIop Publishing2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14206Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 10-2015; 1-181742-5468enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2015/10/P10011/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2015/10/P10011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:43Zoai:ri.conicet.gov.ar:11336/14206instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:43.687CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities |
title |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities |
spellingShingle |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities Centres, Paulo Marcelo Percolation Problems Jamming Problems Linear K-Mers Disordered Lattices |
title_short |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities |
title_full |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities |
title_fullStr |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities |
title_full_unstemmed |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities |
title_sort |
Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities |
dc.creator.none.fl_str_mv |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author |
Centres, Paulo Marcelo |
author_facet |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Ramirez Pastor, Antonio Jose |
author2_role |
author |
dc.subject.none.fl_str_mv |
Percolation Problems Jamming Problems Linear K-Mers Disordered Lattices |
topic |
Percolation Problems Jamming Problems Linear K-Mers Disordered Lattices |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Percolation and jamming of linear k-mers (particles occupying k adjacent sites) on two-dimensional square lattices with impurities have been studied by numerical simulations and finite-size scaling analysis. The model offers a simplified representation of the problem of percolation in amorphous solids, where the presence of defects in the system is simulated by introducing a fraction of imperfect bonds ρ, which are considered forbidden for deposition.The dependence of percolation and jamming thresholds on the concentration of defects was investigated for dierent values of k, ranging from 2 to 64. Theresults obtained show that: for each fixed value of k, percolation can occur when ρ is smaller than a certain value ρ*_k; and in the range 0<ρ<ρ*_k, the percolation threshold is practically independent of the fraction of defects. The behavior of ρ*_k as a function of k indicates that the percolation of linear k-mers on square lattices is impossible even for an ideal lattice if k ⪆ 5500. Critical exponents were also calculated to show that the universality class corresponding to ordinary percolation is preserved. Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina. Universidad Nacional de San Luis; Argentina |
description |
Percolation and jamming of linear k-mers (particles occupying k adjacent sites) on two-dimensional square lattices with impurities have been studied by numerical simulations and finite-size scaling analysis. The model offers a simplified representation of the problem of percolation in amorphous solids, where the presence of defects in the system is simulated by introducing a fraction of imperfect bonds ρ, which are considered forbidden for deposition.The dependence of percolation and jamming thresholds on the concentration of defects was investigated for dierent values of k, ranging from 2 to 64. Theresults obtained show that: for each fixed value of k, percolation can occur when ρ is smaller than a certain value ρ*_k; and in the range 0<ρ<ρ*_k, the percolation threshold is practically independent of the fraction of defects. The behavior of ρ*_k as a function of k indicates that the percolation of linear k-mers on square lattices is impossible even for an ideal lattice if k ⪆ 5500. Critical exponents were also calculated to show that the universality class corresponding to ordinary percolation is preserved. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14206 Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 10-2015; 1-18 1742-5468 |
url |
http://hdl.handle.net/11336/14206 |
identifier_str_mv |
Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation and jamming in random sequential adsorption of linear k-mers on square lattices with the presence of impurities; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 10-2015; 1-18 1742-5468 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2015/10/P10011/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2015/10/P10011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing |
publisher.none.fl_str_mv |
Iop Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269302457106432 |
score |
13.13397 |