Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats

Autores
Schneider, Patricia Graciela; Rodriguez, Georgina Emma
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.
Fil: Schneider, Patricia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; Argentina
Fil: Rodriguez, Georgina Emma. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; Argentina
Materia
Ketamine
Bicuculline
Experimental Epilepsy
Muscarinic Receptors
Seizures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16986

id CONICETDig_a2b9e841ada283d49f24b346bc5a54d7
oai_identifier_str oai:ri.conicet.gov.ar:11336/16986
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in ratsSchneider, Patricia GracielaRodriguez, Georgina EmmaKetamineBicucullineExperimental EpilepsyMuscarinic ReceptorsSeizureshttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.Fil: Schneider, Patricia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Rodriguez, Georgina Emma. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; ArgentinaElsevier2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16986Schneider, Patricia Graciela; Rodriguez, Georgina Emma; Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats; Elsevier; Neurochemistry International; 62; 3; 2-2013; 258-2640197-0186enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0197018612004111info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuint.2012.12.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:58Zoai:ri.conicet.gov.ar:11336/16986instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:58.378CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
title Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
spellingShingle Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
Schneider, Patricia Graciela
Ketamine
Bicuculline
Experimental Epilepsy
Muscarinic Receptors
Seizures
title_short Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
title_full Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
title_fullStr Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
title_full_unstemmed Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
title_sort Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
dc.creator.none.fl_str_mv Schneider, Patricia Graciela
Rodriguez, Georgina Emma
author Schneider, Patricia Graciela
author_facet Schneider, Patricia Graciela
Rodriguez, Georgina Emma
author_role author
author2 Rodriguez, Georgina Emma
author2_role author
dc.subject.none.fl_str_mv Ketamine
Bicuculline
Experimental Epilepsy
Muscarinic Receptors
Seizures
topic Ketamine
Bicuculline
Experimental Epilepsy
Muscarinic Receptors
Seizures
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.
Fil: Schneider, Patricia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; Argentina
Fil: Rodriguez, Georgina Emma. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; Argentina
description The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.
publishDate 2013
dc.date.none.fl_str_mv 2013-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16986
Schneider, Patricia Graciela; Rodriguez, Georgina Emma; Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats; Elsevier; Neurochemistry International; 62; 3; 2-2013; 258-264
0197-0186
url http://hdl.handle.net/11336/16986
identifier_str_mv Schneider, Patricia Graciela; Rodriguez, Georgina Emma; Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats; Elsevier; Neurochemistry International; 62; 3; 2-2013; 258-264
0197-0186
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0197018612004111
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuint.2012.12.013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614222900625408
score 13.070432