Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats
- Autores
- Schneider, Patricia Graciela; Rodriguez, Georgina Emma
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.
Fil: Schneider, Patricia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; Argentina
Fil: Rodriguez, Georgina Emma. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; Argentina - Materia
-
Ketamine
Bicuculline
Experimental Epilepsy
Muscarinic Receptors
Seizures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16986
Ver los metadatos del registro completo
id |
CONICETDig_a2b9e841ada283d49f24b346bc5a54d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16986 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in ratsSchneider, Patricia GracielaRodriguez, Georgina EmmaKetamineBicucullineExperimental EpilepsyMuscarinic ReceptorsSeizureshttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.Fil: Schneider, Patricia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Rodriguez, Georgina Emma. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; ArgentinaElsevier2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16986Schneider, Patricia Graciela; Rodriguez, Georgina Emma; Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats; Elsevier; Neurochemistry International; 62; 3; 2-2013; 258-2640197-0186enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0197018612004111info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuint.2012.12.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:58Zoai:ri.conicet.gov.ar:11336/16986instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:58.378CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats |
title |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats |
spellingShingle |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats Schneider, Patricia Graciela Ketamine Bicuculline Experimental Epilepsy Muscarinic Receptors Seizures |
title_short |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats |
title_full |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats |
title_fullStr |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats |
title_full_unstemmed |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats |
title_sort |
Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats |
dc.creator.none.fl_str_mv |
Schneider, Patricia Graciela Rodriguez, Georgina Emma |
author |
Schneider, Patricia Graciela |
author_facet |
Schneider, Patricia Graciela Rodriguez, Georgina Emma |
author_role |
author |
author2 |
Rodriguez, Georgina Emma |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ketamine Bicuculline Experimental Epilepsy Muscarinic Receptors Seizures |
topic |
Ketamine Bicuculline Experimental Epilepsy Muscarinic Receptors Seizures |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved. Fil: Schneider, Patricia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; Argentina Fil: Rodriguez, Georgina Emma. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; Argentina |
description |
The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16986 Schneider, Patricia Graciela; Rodriguez, Georgina Emma; Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats; Elsevier; Neurochemistry International; 62; 3; 2-2013; 258-264 0197-0186 |
url |
http://hdl.handle.net/11336/16986 |
identifier_str_mv |
Schneider, Patricia Graciela; Rodriguez, Georgina Emma; Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats; Elsevier; Neurochemistry International; 62; 3; 2-2013; 258-264 0197-0186 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0197018612004111 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuint.2012.12.013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614222900625408 |
score |
13.070432 |