Strategy for stopping failure cascades in interdependent networks
- Autores
- la Rocca, Cristian Ernesto; Stanley, Harry Eugene; Braunstein, Lidia Adriana
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Interdependencies are ubiquitous throughout the world. Every real-world system interacts with and is dependent on other systems, and this interdependency affects their performance. In particular, interdependencies among networks make them vulnerable to failure cascades, the effects of which are often catastrophic. Failure propagation fragments network components, disconnects them, and may cause complete systemic failure. We propose a strategy of avoiding or at least mitigating the complete destruction of a system of interdependent networks experiencing a failure cascade. Starting with a fraction 1−p of failing nodes in one network, we reconnect with a probability γ every isolated component to a functional giant component (GC), the largest connected cluster. We find that as γ increases the resilience of the system to cascading failure also increases. We also find that our strategy is more effective when it is applied in a network of low average degree. We solve the problem theoretically using percolation theory, and we find that the solution agrees with simulation results.
Fil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Stanley, Harry Eugene. Boston University; Estados Unidos
Fil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina - Materia
-
COMPLEX NETWORKS
INTERDEPENDENT NETWORKS
CASCADE OF FAILURES
PERCOLATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89212
Ver los metadatos del registro completo
id |
CONICETDig_a221a53e638a95b7ea031cb8131a8ccd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89212 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Strategy for stopping failure cascades in interdependent networksla Rocca, Cristian ErnestoStanley, Harry EugeneBraunstein, Lidia AdrianaCOMPLEX NETWORKSINTERDEPENDENT NETWORKSCASCADE OF FAILURESPERCOLATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Interdependencies are ubiquitous throughout the world. Every real-world system interacts with and is dependent on other systems, and this interdependency affects their performance. In particular, interdependencies among networks make them vulnerable to failure cascades, the effects of which are often catastrophic. Failure propagation fragments network components, disconnects them, and may cause complete systemic failure. We propose a strategy of avoiding or at least mitigating the complete destruction of a system of interdependent networks experiencing a failure cascade. Starting with a fraction 1−p of failing nodes in one network, we reconnect with a probability γ every isolated component to a functional giant component (GC), the largest connected cluster. We find that as γ increases the resilience of the system to cascading failure also increases. We also find that our strategy is more effective when it is applied in a network of low average degree. We solve the problem theoretically using percolation theory, and we find that the solution agrees with simulation results.Fil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Stanley, Harry Eugene. Boston University; Estados UnidosFil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaElsevier Science2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89212la Rocca, Cristian Ernesto; Stanley, Harry Eugene; Braunstein, Lidia Adriana; Strategy for stopping failure cascades in interdependent networks; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 508; 6-2018; 577-5830378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2018.05.154info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437118307155?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:29Zoai:ri.conicet.gov.ar:11336/89212instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:29.578CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Strategy for stopping failure cascades in interdependent networks |
title |
Strategy for stopping failure cascades in interdependent networks |
spellingShingle |
Strategy for stopping failure cascades in interdependent networks la Rocca, Cristian Ernesto COMPLEX NETWORKS INTERDEPENDENT NETWORKS CASCADE OF FAILURES PERCOLATION |
title_short |
Strategy for stopping failure cascades in interdependent networks |
title_full |
Strategy for stopping failure cascades in interdependent networks |
title_fullStr |
Strategy for stopping failure cascades in interdependent networks |
title_full_unstemmed |
Strategy for stopping failure cascades in interdependent networks |
title_sort |
Strategy for stopping failure cascades in interdependent networks |
dc.creator.none.fl_str_mv |
la Rocca, Cristian Ernesto Stanley, Harry Eugene Braunstein, Lidia Adriana |
author |
la Rocca, Cristian Ernesto |
author_facet |
la Rocca, Cristian Ernesto Stanley, Harry Eugene Braunstein, Lidia Adriana |
author_role |
author |
author2 |
Stanley, Harry Eugene Braunstein, Lidia Adriana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COMPLEX NETWORKS INTERDEPENDENT NETWORKS CASCADE OF FAILURES PERCOLATION |
topic |
COMPLEX NETWORKS INTERDEPENDENT NETWORKS CASCADE OF FAILURES PERCOLATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Interdependencies are ubiquitous throughout the world. Every real-world system interacts with and is dependent on other systems, and this interdependency affects their performance. In particular, interdependencies among networks make them vulnerable to failure cascades, the effects of which are often catastrophic. Failure propagation fragments network components, disconnects them, and may cause complete systemic failure. We propose a strategy of avoiding or at least mitigating the complete destruction of a system of interdependent networks experiencing a failure cascade. Starting with a fraction 1−p of failing nodes in one network, we reconnect with a probability γ every isolated component to a functional giant component (GC), the largest connected cluster. We find that as γ increases the resilience of the system to cascading failure also increases. We also find that our strategy is more effective when it is applied in a network of low average degree. We solve the problem theoretically using percolation theory, and we find that the solution agrees with simulation results. Fil: la Rocca, Cristian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Stanley, Harry Eugene. Boston University; Estados Unidos Fil: Braunstein, Lidia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina |
description |
Interdependencies are ubiquitous throughout the world. Every real-world system interacts with and is dependent on other systems, and this interdependency affects their performance. In particular, interdependencies among networks make them vulnerable to failure cascades, the effects of which are often catastrophic. Failure propagation fragments network components, disconnects them, and may cause complete systemic failure. We propose a strategy of avoiding or at least mitigating the complete destruction of a system of interdependent networks experiencing a failure cascade. Starting with a fraction 1−p of failing nodes in one network, we reconnect with a probability γ every isolated component to a functional giant component (GC), the largest connected cluster. We find that as γ increases the resilience of the system to cascading failure also increases. We also find that our strategy is more effective when it is applied in a network of low average degree. We solve the problem theoretically using percolation theory, and we find that the solution agrees with simulation results. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89212 la Rocca, Cristian Ernesto; Stanley, Harry Eugene; Braunstein, Lidia Adriana; Strategy for stopping failure cascades in interdependent networks; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 508; 6-2018; 577-583 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89212 |
identifier_str_mv |
la Rocca, Cristian Ernesto; Stanley, Harry Eugene; Braunstein, Lidia Adriana; Strategy for stopping failure cascades in interdependent networks; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 508; 6-2018; 577-583 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2018.05.154 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437118307155?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613556208664576 |
score |
13.070432 |